Abstract

The plasmonic resonance effect on metasurfaces generates an abrupt phase change. We employ this phase modulation mechanism to design the longitudinal field distribution of an ultrathin terahertz (THz) lens for achieving the axial long-focal-depth (LFD) property. Phase distributions of the designed lens are obtained by the Yang-Gu iterative amplitude-phase retrieval algorithm. By depositing a 100 nm gold film on a 500 μm silicon substrate and etching arrayed V-shaped air holes through the gold film, the designed ultrathin THz lens is fabricated by the micro photolithography technology. Experimental measurements have demonstrated its LFD property, which basically agree with the theoretical simulations. In addition, the designed THz lens possesses a good LFD property with a bandwidth of 200 GHz. It is expected that the designed ultrathin LFD THz lens should have wide potential applications in broadband THz imaging and THz communication systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett.16, 523–525 (1991).
    [CrossRef] [PubMed]
  2. J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett.17, 7–9 (1992).
    [CrossRef] [PubMed]
  3. Z. Jaroszewicz, J. Sochacki, A. Kołodziejczyk, and L. R. Staronski, “Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions,” Opt. Lett.18, 1893–1895 (1993).
    [CrossRef] [PubMed]
  4. B. Z. Dong, G. Z. Yang, B. Y. Gu, and O. K. Ersoy, “Iterative optimization approach for designing an axicon with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A13, 97–103 (1996).
    [CrossRef]
  5. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature497, 470–474 (2013).
    [CrossRef] [PubMed]
  6. X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron.48, 1554–1559 (2012).
    [CrossRef]
  7. X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys.111,073108 (2012).
    [CrossRef]
  8. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
    [CrossRef]
  9. L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng.50,063001 (2011).
    [CrossRef]
  10. J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
    [CrossRef] [PubMed]
  11. L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).
    [CrossRef]
  12. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
    [CrossRef] [PubMed]
  13. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10, 1936–1940 (2010).
    [CrossRef] [PubMed]
  14. F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
    [CrossRef] [PubMed]
  15. X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl.2,e72 (2013).
    [CrossRef]
  16. D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater.1, 186–191 (2013).
    [CrossRef]
  17. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
    [CrossRef] [PubMed]
  18. P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100,013101 (2012).
    [CrossRef]
  19. J. W. He, X. K. Wang, D. Hu, J. S. Ye, S. F. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express21, 20230–20239 (2013).
    [CrossRef] [PubMed]
  20. X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
    [CrossRef] [PubMed]
  21. N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12, 6328–6333 (2012).
    [CrossRef] [PubMed]
  22. X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater.25, 4566–4571 (2013).
    [CrossRef]
  23. L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl.2,e70 (2013).
    [CrossRef]
  24. X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science339, 1405–1407 (2013).
    [CrossRef] [PubMed]
  25. G. Z. Yang, B. Z. Dong, B. Y. Gu, J. Y. Zhuang, and O. K. Ersoy, “Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Appl. Opt.33, 209–218 (1994).
    [CrossRef] [PubMed]
  26. G. Z. Yang, B. Y. Gu, X. Tan, M. P. Chang, B. Z. Dong, and O. K. Ersoy, “Iterative optimization approach for the design of diffractive phase elements simultaneously implementing several optical functions,” J. Opt. Soc. Am. A11, 1632–1640 (1994).
    [CrossRef]
  27. D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A85,045801 (2012).
    [CrossRef]
  28. X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A27, 2387–2393 (2010).
    [CrossRef]
  29. X. K. Wang, W. F. Sun, Y. Cui, J. S. Ye, S. F. Feng, and Y. Zhang, “Complete presentation of the Gouy phase shift with the THz digital holography,” Opt. Express21, 2337–2346 (2013).
    [CrossRef] [PubMed]

2013 (8)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature497, 470–474 (2013).
[CrossRef] [PubMed]

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl.2,e72 (2013).
[CrossRef]

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater.1, 186–191 (2013).
[CrossRef]

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater.25, 4566–4571 (2013).
[CrossRef]

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl.2,e70 (2013).
[CrossRef]

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science339, 1405–1407 (2013).
[CrossRef] [PubMed]

X. K. Wang, W. F. Sun, Y. Cui, J. S. Ye, S. F. Feng, and Y. Zhang, “Complete presentation of the Gouy phase shift with the THz digital holography,” Opt. Express21, 2337–2346 (2013).
[CrossRef] [PubMed]

J. W. He, X. K. Wang, D. Hu, J. S. Ye, S. F. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express21, 20230–20239 (2013).
[CrossRef] [PubMed]

2012 (7)

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A85,045801 (2012).
[CrossRef]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100,013101 (2012).
[CrossRef]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
[CrossRef] [PubMed]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12, 6328–6333 (2012).
[CrossRef] [PubMed]

X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron.48, 1554–1559 (2012).
[CrossRef]

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys.111,073108 (2012).
[CrossRef]

2011 (4)

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng.50,063001 (2011).
[CrossRef]

L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
[CrossRef] [PubMed]

2010 (4)

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10, 1936–1940 (2010).
[CrossRef] [PubMed]

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
[CrossRef] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A27, 2387–2393 (2010).
[CrossRef]

1996 (1)

1994 (2)

1993 (1)

1992 (1)

1991 (1)

Abashin, M.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature497, 470–474 (2013).
[CrossRef] [PubMed]

Agrawal, A.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature497, 470–474 (2013).
[CrossRef] [PubMed]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12, 6328–6333 (2012).
[CrossRef] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100,013101 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Bai, B. F.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl.2,e70 (2013).
[CrossRef]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
[CrossRef] [PubMed]

Bao, J. M.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
[CrossRef] [PubMed]

Bao, K.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
[CrossRef] [PubMed]

Bará, S.

Bardhan, R.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
[CrossRef] [PubMed]

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

Blanchard, R.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100,013101 (2012).
[CrossRef]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

Capasso, F.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12, 6328–6333 (2012).
[CrossRef] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100,013101 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
[CrossRef] [PubMed]

Chang, M. P.

Chau, K. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature497, 470–474 (2013).
[CrossRef] [PubMed]

Chen, X. Z.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl.2,e70 (2013).
[CrossRef]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
[CrossRef] [PubMed]

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
[CrossRef] [PubMed]

Cui, Y.

Davidson, N.

Deng, Q. L.

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng.50,063001 (2011).
[CrossRef]

Dong, B. Z.

Dong, X. C.

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng.50,063001 (2011).
[CrossRef]

Du, C. L.

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng.50,063001 (2011).
[CrossRef]

Ersoy, O. K.

Fan, J. A.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
[CrossRef] [PubMed]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

Feng, S. F.

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

Friesem, A. A.

Gaburro, Z.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12, 6328–6333 (2012).
[CrossRef] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100,013101 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Genevet, P.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100,013101 (2012).
[CrossRef]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12, 6328–6333 (2012).
[CrossRef] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Goh, X. M.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10, 1936–1940 (2010).
[CrossRef] [PubMed]

Gu, B. Y.

Gu, J. Q.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater.25, 4566–4571 (2013).
[CrossRef]

Halas, N. J.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
[CrossRef] [PubMed]

Han, J. G.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater.25, 4566–4571 (2013).
[CrossRef]

Hasman, E.

He, J. W.

He, X. Y.

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys.111,073108 (2012).
[CrossRef]

X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron.48, 1554–1559 (2012).
[CrossRef]

Hu, D.

J. W. He, X. K. Wang, D. Hu, J. S. Ye, S. F. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express21, 20230–20239 (2013).
[CrossRef] [PubMed]

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater.1, 186–191 (2013).
[CrossRef]

D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A85,045801 (2012).
[CrossRef]

Huang, L. L.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl.2,e70 (2013).
[CrossRef]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
[CrossRef] [PubMed]

Hulst, N. V.

L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).
[CrossRef]

Ishii, S.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl.2,e72 (2013).
[CrossRef]

Jaroszewicz, Z.

Jin, G. F.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl.2,e70 (2013).
[CrossRef]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
[CrossRef] [PubMed]

Kan, Q.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater.1, 186–191 (2013).
[CrossRef]

J. W. He, X. K. Wang, D. Hu, J. S. Ye, S. F. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express21, 20230–20239 (2013).
[CrossRef] [PubMed]

Kang, K. Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
[CrossRef] [PubMed]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
[CrossRef] [PubMed]

Kats, M. A.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100,013101 (2012).
[CrossRef]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12, 6328–6333 (2012).
[CrossRef] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Kildishev, A. V.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl.2,e72 (2013).
[CrossRef]

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
[CrossRef] [PubMed]

Klar, P. J.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater.1, 186–191 (2013).
[CrossRef]

Kolodziejczyk, A.

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
[CrossRef] [PubMed]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
[CrossRef] [PubMed]

Lee, Y. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
[CrossRef] [PubMed]

Lezec, H. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature497, 470–474 (2013).
[CrossRef] [PubMed]

Li, G. X.

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
[CrossRef] [PubMed]

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

Lin, J.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100,013101 (2012).
[CrossRef]

Lin, L.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10, 1936–1940 (2010).
[CrossRef] [PubMed]

Liu, M.

D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A85,045801 (2012).
[CrossRef]

Lu, Y. G.

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng.50,063001 (2011).
[CrossRef]

Manoharan, V. N.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
[CrossRef] [PubMed]

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10, 1936–1940 (2010).
[CrossRef] [PubMed]

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
[CrossRef] [PubMed]

Mühlenbernd, H.

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
[CrossRef] [PubMed]

Ni, X. J.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl.2,e72 (2013).
[CrossRef]

Nordlander, P.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).
[CrossRef]

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
[CrossRef] [PubMed]

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

Qiu, C. W.

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
[CrossRef] [PubMed]

Rho, J.

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science339, 1405–1407 (2013).
[CrossRef] [PubMed]

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10, 1936–1940 (2010).
[CrossRef] [PubMed]

Scully, M. O.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100,013101 (2012).
[CrossRef]

Shalaev, V. M.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl.2,e72 (2013).
[CrossRef]

Shi, L. F.

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng.50,063001 (2011).
[CrossRef]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
[CrossRef] [PubMed]

Shvets, G.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
[CrossRef] [PubMed]

Sochacki, J.

Staronski, L. R.

Sun, W. F.

Tan, Q. F.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl.2,e70 (2013).
[CrossRef]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
[CrossRef] [PubMed]

Tan, X.

Tetienne, J. P.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Tian, Z.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater.25, 4566–4571 (2013).
[CrossRef]

Wang, Q. J.

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys.111,073108 (2012).
[CrossRef]

X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron.48, 1554–1559 (2012).
[CrossRef]

Wang, X. K.

Wang, Y.

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science339, 1405–1407 (2013).
[CrossRef] [PubMed]

Wu, C. H.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
[CrossRef] [PubMed]

Xie, C. Q.

D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A85,045801 (2012).
[CrossRef]

Xu, T.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature497, 470–474 (2013).
[CrossRef] [PubMed]

Yang, G. Z.

Ye, J. S.

Ye, Y. T.

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng.50,063001 (2011).
[CrossRef]

Ye, Z. L.

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science339, 1405–1407 (2013).
[CrossRef] [PubMed]

Yin, X. B.

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science339, 1405–1407 (2013).
[CrossRef] [PubMed]

Yu, N. F.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12, 6328–6333 (2012).
[CrossRef] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100,013101 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Yu, S. F.

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys.111,073108 (2012).
[CrossRef]

X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron.48, 1554–1559 (2012).
[CrossRef]

Yue, W. S.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater.25, 4566–4571 (2013).
[CrossRef]

Zentgraf, T.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl.2,e70 (2013).
[CrossRef]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
[CrossRef] [PubMed]

Zhang, S.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater.25, 4566–4571 (2013).
[CrossRef]

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl.2,e70 (2013).
[CrossRef]

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
[CrossRef] [PubMed]

Zhang, W. L.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater.25, 4566–4571 (2013).
[CrossRef]

Zhang, X.

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science339, 1405–1407 (2013).
[CrossRef] [PubMed]

Zhang, X. Q.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater.25, 4566–4571 (2013).
[CrossRef]

Zhang, Y.

Zhuang, J. Y.

Adv. Mater. (1)

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater.25, 4566–4571 (2013).
[CrossRef]

Adv. Opt. Mater. (1)

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater.1, 186–191 (2013).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100,013101 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Y. He, Q. J. Wang, and S. F. Yu, “Investigation of multilayer subwavelength metallic-dielectric stratified structures,” IEEE J. Quantum Electron.48, 1554–1559 (2012).
[CrossRef]

J. Appl. Phys. (1)

X. Y. He, Q. J. Wang, and S. F. Yu, “Analysis of dielectric loaded surface plasmon waveguide structures: transfer matrix method for plasmonic devices,” J. Appl. Phys.111,073108 (2012).
[CrossRef]

J. Opt. Soc. Am. A (3)

Light: Sci. Appl. (2)

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Appl.2,e70 (2013).
[CrossRef]

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl.2,e72 (2013).
[CrossRef]

Nano Lett. (3)

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10, 1936–1940 (2010).
[CrossRef] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12, 6328–6333 (2012).
[CrossRef] [PubMed]

Nat. Commun. (1)

X. Z. Chen, L. L. Huang, H. Mühlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3,1198 (2012).
[CrossRef] [PubMed]

Nat. Photon. (2)

L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).
[CrossRef]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

Nature (2)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature497, 470–474 (2013).
[CrossRef] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011).
[CrossRef] [PubMed]

Opt. Eng. (1)

L. F. Shi, X. C. Dong, Q. L. Deng, Y. G. Lu, Y. T. Ye, and C. L. Du, “Design and characterization of an axicon structured lens,” Opt. Eng.50,063001 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

D. Hu, C. Q. Xie, M. Liu, and Y. Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A85,045801 (2012).
[CrossRef]

Science (3)

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010).
[CrossRef] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science339, 1405–1407 (2013).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A focusing geometry of the ultrathin LFD THz lens. (b) Eight-level quantized phase distributions of the designed ultrathin LFD THz lens.

Fig. 2
Fig. 2

(a) A schematic of the metasurface in a unit cell. (b) An optical microscopy of the central part of the fabricated ultrathin LFD THz lens. (c) Experimental intensity distributions in the xz plane. (d) The blue and red curves represent the theoretical and experimental intensity distributions of the LFD THz lens along the z-axis. The black curve plots the axial intensity distributions of a conventional THz lens. The dashed lines mark the three focal depths.

Fig. 3
Fig. 3

(a) Experimental intensity profiles |Ey|2 along the x-axis on the three lateral planes at zα = 9 mm (blue solid curve), 11 mm (red dashed curve), and 13 mm (black solid curve). (b) is the same as (a) except for the theoretical simulations. (c), (d), and (e) are regional intensity patterns on the three lateral planes at zα = 9, 11, and 13 mm, respectively.

Fig. 4
Fig. 4

(a), (b) and (c) represent the experimental intensity patterns |Ey|2 of the fabricated ultrathin LFD THz lens on the xz-plane at frequencies of 0.617, 0.706, and 0.794 THz, respectively. (d) The blue, green, and red curves represent the The experimental axial intensity profiles. The dashed lines illustrate the LFD regions. (e) is the same as (d) except for theoretical simulations.

Tables (2)

Tables Icon

Table1 Structure units and their parameters for eight quantized phases

Tables Icon

Table 2 Experimental dispersive LFD properties of the fabricated ultrathin LFD THz lens

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

U 1 = U 1 ( X 1 ) = ρ 1 ( X 1 ) exp [ i ϕ 1 ( X 1 ) ] ,
U 2 α = U 2 α ( X 2 α , z α ) = ρ 2 α ( X 2 α , z α ) exp [ i ϕ 2 α ( X 2 α , z α ) ] ,
U 2 α ( X 2 α , z α ) = G ( X 2 α , X 1 , z α ) U 1 ( X 1 ) d X 1 ,
G ( X 2 α , X 1 , z α ) = 2 π i λ z α exp [ i 2 π z α λ + i π ( X 2 α X 1 ) 2 λ z α ] .
U 2 α ( X 2 α , z α ) = G ^ α U 1 ( X 1 ) .
Δ = α ( U 2 α 0 U 2 α ) 2 ,
exp [ i ϕ 1 ( X 1 ) ] = Q * / | Q | ,
exp [ i ϕ 2 α ( X 2 α , z α ) ] = G ^ α ρ 1 ( X 1 ) exp [ i ϕ 1 ( X 1 ) ] | G ^ α ρ 1 ( X 1 ) exp [ i ϕ 1 ( X 1 ) ] | ,
Q = α ρ 1 ( X 1 ) exp [ i ϕ 1 ( X 1 ) ] A ^ α ρ 2 α ( X 2 α ) exp [ i ϕ 2 α ( X 2 α , z α ) G ^ α ] ,

Metrics