Abstract

Cathodoluminescence (CL) microscopy is an emerging analysis technique in the fields of biology and photonics, where it is used for the characterization of nanometer sized structures. For these applications, the use of transparent substrates might be highly preferred, but the detection of CL from nanostructures on glass is challenging because of the strong background generated in these substrates and the relatively weak CL signal from the nanostructures. We present an imaging system for highly efficient CL detection through the substrate using a high numerical aperture objective lens. This system allows for detection of individual nano-phosphors down to thirty nanometer in size as well as the up to ninth order plasmon resonance modes of a gold nanowire on ITO coated glass. We analyze the CL signal-to-background dependence on the primary electron beam energy and discuss different approaches to minimize its influence on the measurement.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Goetze and U. Kempe, “A comparison of optical microscope- and scanning electron microscope-based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences,” Mineral. Mag.72(4), 909–924 (2008).
    [CrossRef]
  2. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence Spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
    [CrossRef] [PubMed]
  3. T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional Emission from Plasmonic Yagi-Uda Antennas Probed by Angle-Resolved Cathodoluminescence Spectroscopy,” Nano Lett.11(9), 3779–3784 (2011).
    [CrossRef] [PubMed]
  4. A. I. Denisyuk, G. Adamo, K. F. MacDonald, J. Edgar, M. D. Arnold, V. Myroshnychenko, M. J. Ford, F. J. García de Abajo, and N. I. Zheludev, “Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed,” Nano Lett.10(9), 3250–3252 (2010).
    [CrossRef] [PubMed]
  5. R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11(9), 781–787 (2012).
    [CrossRef] [PubMed]
  6. H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors,” Appl. Phys. Express4(11), 112402 (2011).
    [CrossRef]
  7. D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, “Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours,” Sci. Rep.2, 865 (2012).
    [CrossRef] [PubMed]
  8. Y. Nawa, W. Inami, A. Chiba, A. Ono, A. Miyakawa, Y. Kawata, S. Lin, and S. Terakawa, “Dynamic and high-resolution live cell imaging by direct electron beam excitation,” Opt. Express20(5), 5629–5635 (2012).
    [CrossRef] [PubMed]
  9. R. Gomez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” New J. Phys.10(10), 105009 (2008).
    [CrossRef]
  10. M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. Garcia de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B Condens. Matter79(11), 113405 (2009).
    [CrossRef]
  11. B. Dierre, X. Yuan, and T. Sekiguchi, “Low-energy cathodoluminescence microscopy for the characterization of nanostructures,” Sci. Technol. Adv. Mater.11(4), 043001 (2010).
    [CrossRef]
  12. L. H. G. Tizei and M. Kociak, “Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope,” Phys. Rev. Lett.110(15), 153604 (2013).
    [CrossRef]
  13. A. Ishikawa, F. Mizuno, Y. Uchikawa, and S. Maruse, “High resolution and spectroscopic cathodoluminescent images in Scanning Electron-Microscope,” Jpn. J. Appl. Phys.12(2), 286–292 (1973).
    [CrossRef]
  14. A. C. Zonnevylle, R. F. C. Van Tol, N. Liv, A. C. Narvaez, A. P. J. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a Scanning Electron Microscope,” J. Microsc.252(1), 58–70 (2013), doi: .
    [CrossRef] [PubMed]
  15. N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
    [CrossRef] [PubMed]
  16. T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
    [CrossRef] [PubMed]
  17. F. J. Garcia de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82(1), 209–275 (2010).
    [CrossRef]
  18. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007).
    [CrossRef] [PubMed]
  19. D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar Plasmonic Resonances in Silver Nanowire Antennas Imaged with a Subnanometer Electron Probe,” Nano Lett.11(4), 1499–1504 (2011).
    [CrossRef] [PubMed]
  20. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis: Ludwig Reimer (Springer, 1985).
  21. M. Kuttge, “Cathodoluminescence Plasmon Microscopy,” PhD Thesis at Utrecht University (2009).
  22. C. W. Hagen and P. Kruit, “Optimization of focused ion beam performance,” J. Vac. Sci. Technol. B27(6), 2654–2659 (2009).
    [CrossRef]

2013

L. H. G. Tizei and M. Kociak, “Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope,” Phys. Rev. Lett.110(15), 153604 (2013).
[CrossRef]

A. C. Zonnevylle, R. F. C. Van Tol, N. Liv, A. C. Narvaez, A. P. J. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a Scanning Electron Microscope,” J. Microsc.252(1), 58–70 (2013), doi: .
[CrossRef] [PubMed]

N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
[CrossRef] [PubMed]

2012

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
[CrossRef] [PubMed]

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11(9), 781–787 (2012).
[CrossRef] [PubMed]

D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, “Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours,” Sci. Rep.2, 865 (2012).
[CrossRef] [PubMed]

Y. Nawa, W. Inami, A. Chiba, A. Ono, A. Miyakawa, Y. Kawata, S. Lin, and S. Terakawa, “Dynamic and high-resolution live cell imaging by direct electron beam excitation,” Opt. Express20(5), 5629–5635 (2012).
[CrossRef] [PubMed]

2011

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar Plasmonic Resonances in Silver Nanowire Antennas Imaged with a Subnanometer Electron Probe,” Nano Lett.11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors,” Appl. Phys. Express4(11), 112402 (2011).
[CrossRef]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional Emission from Plasmonic Yagi-Uda Antennas Probed by Angle-Resolved Cathodoluminescence Spectroscopy,” Nano Lett.11(9), 3779–3784 (2011).
[CrossRef] [PubMed]

2010

A. I. Denisyuk, G. Adamo, K. F. MacDonald, J. Edgar, M. D. Arnold, V. Myroshnychenko, M. J. Ford, F. J. García de Abajo, and N. I. Zheludev, “Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed,” Nano Lett.10(9), 3250–3252 (2010).
[CrossRef] [PubMed]

F. J. Garcia de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82(1), 209–275 (2010).
[CrossRef]

B. Dierre, X. Yuan, and T. Sekiguchi, “Low-energy cathodoluminescence microscopy for the characterization of nanostructures,” Sci. Technol. Adv. Mater.11(4), 043001 (2010).
[CrossRef]

2009

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. Garcia de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B Condens. Matter79(11), 113405 (2009).
[CrossRef]

C. W. Hagen and P. Kruit, “Optimization of focused ion beam performance,” J. Vac. Sci. Technol. B27(6), 2654–2659 (2009).
[CrossRef]

2008

J. Goetze and U. Kempe, “A comparison of optical microscope- and scanning electron microscope-based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences,” Mineral. Mag.72(4), 909–924 (2008).
[CrossRef]

R. Gomez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” New J. Phys.10(10), 105009 (2008).
[CrossRef]

2007

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence Spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007).
[CrossRef] [PubMed]

1973

A. Ishikawa, F. Mizuno, Y. Uchikawa, and S. Maruse, “High resolution and spectroscopic cathodoluminescent images in Scanning Electron-Microscope,” Jpn. J. Appl. Phys.12(2), 286–292 (1973).
[CrossRef]

Adamo, G.

A. I. Denisyuk, G. Adamo, K. F. MacDonald, J. Edgar, M. D. Arnold, V. Myroshnychenko, M. J. Ford, F. J. García de Abajo, and N. I. Zheludev, “Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed,” Nano Lett.10(9), 3250–3252 (2010).
[CrossRef] [PubMed]

Araki, T.

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors,” Appl. Phys. Express4(11), 112402 (2011).
[CrossRef]

Arnold, M. D.

A. I. Denisyuk, G. Adamo, K. F. MacDonald, J. Edgar, M. D. Arnold, V. Myroshnychenko, M. J. Ford, F. J. García de Abajo, and N. I. Zheludev, “Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed,” Nano Lett.10(9), 3250–3252 (2010).
[CrossRef] [PubMed]

Ashida, M.

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors,” Appl. Phys. Express4(11), 112402 (2011).
[CrossRef]

Atwater, H. A.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. Garcia de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B Condens. Matter79(11), 113405 (2009).
[CrossRef]

Botton, G. A.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar Plasmonic Resonances in Silver Nanowire Antennas Imaged with a Subnanometer Electron Probe,” Nano Lett.11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Chiba, A.

Coenen, T.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11(9), 781–787 (2012).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional Emission from Plasmonic Yagi-Uda Antennas Probed by Angle-Resolved Cathodoluminescence Spectroscopy,” Nano Lett.11(9), 3779–3784 (2011).
[CrossRef] [PubMed]

Couillard, M.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar Plasmonic Resonances in Silver Nanowire Antennas Imaged with a Subnanometer Electron Probe,” Nano Lett.11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

de Waele, R.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence Spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Denisyuk, A. I.

A. I. Denisyuk, G. Adamo, K. F. MacDonald, J. Edgar, M. D. Arnold, V. Myroshnychenko, M. J. Ford, F. J. García de Abajo, and N. I. Zheludev, “Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed,” Nano Lett.10(9), 3250–3252 (2010).
[CrossRef] [PubMed]

Dierre, B.

B. Dierre, X. Yuan, and T. Sekiguchi, “Low-energy cathodoluminescence microscopy for the characterization of nanostructures,” Sci. Technol. Adv. Mater.11(4), 043001 (2010).
[CrossRef]

Edgar, J.

A. I. Denisyuk, G. Adamo, K. F. MacDonald, J. Edgar, M. D. Arnold, V. Myroshnychenko, M. J. Ford, F. J. García de Abajo, and N. I. Zheludev, “Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed,” Nano Lett.10(9), 3250–3252 (2010).
[CrossRef] [PubMed]

Effting, A. P. J.

N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
[CrossRef] [PubMed]

A. C. Zonnevylle, R. F. C. Van Tol, N. Liv, A. C. Narvaez, A. P. J. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a Scanning Electron Microscope,” J. Microsc.252(1), 58–70 (2013), doi: .
[CrossRef] [PubMed]

Ford, M. J.

A. I. Denisyuk, G. Adamo, K. F. MacDonald, J. Edgar, M. D. Arnold, V. Myroshnychenko, M. J. Ford, F. J. García de Abajo, and N. I. Zheludev, “Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed,” Nano Lett.10(9), 3250–3252 (2010).
[CrossRef] [PubMed]

Furukawa, T.

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors,” Appl. Phys. Express4(11), 112402 (2011).
[CrossRef]

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82(1), 209–275 (2010).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. Garcia de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B Condens. Matter79(11), 113405 (2009).
[CrossRef]

García de Abajo, F. J.

A. I. Denisyuk, G. Adamo, K. F. MacDonald, J. Edgar, M. D. Arnold, V. Myroshnychenko, M. J. Ford, F. J. García de Abajo, and N. I. Zheludev, “Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed,” Nano Lett.10(9), 3250–3252 (2010).
[CrossRef] [PubMed]

R. Gomez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” New J. Phys.10(10), 105009 (2008).
[CrossRef]

Glenn, D. R.

D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, “Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours,” Sci. Rep.2, 865 (2012).
[CrossRef] [PubMed]

Goetze, J.

J. Goetze and U. Kempe, “A comparison of optical microscope- and scanning electron microscope-based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences,” Mineral. Mag.72(4), 909–924 (2008).
[CrossRef]

Gomez-Medina, R.

R. Gomez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” New J. Phys.10(10), 105009 (2008).
[CrossRef]

Hagen, C. W.

C. W. Hagen and P. Kruit, “Optimization of focused ion beam performance,” J. Vac. Sci. Technol. B27(6), 2654–2659 (2009).
[CrossRef]

Hardwick, J. C.

N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
[CrossRef] [PubMed]

Hashimoto, M.

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors,” Appl. Phys. Express4(11), 112402 (2011).
[CrossRef]

Hoogenboom, J. P.

A. C. Zonnevylle, R. F. C. Van Tol, N. Liv, A. C. Narvaez, A. P. J. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a Scanning Electron Microscope,” J. Microsc.252(1), 58–70 (2013), doi: .
[CrossRef] [PubMed]

N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
[CrossRef] [PubMed]

Ichimiya, M.

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors,” Appl. Phys. Express4(11), 112402 (2011).
[CrossRef]

Inami, W.

Ishikawa, A.

A. Ishikawa, F. Mizuno, Y. Uchikawa, and S. Maruse, “High resolution and spectroscopic cathodoluminescent images in Scanning Electron-Microscope,” Jpn. J. Appl. Phys.12(2), 286–292 (1973).
[CrossRef]

Karaveli, S.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
[CrossRef] [PubMed]

Kasthuri, N.

D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, “Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours,” Sci. Rep.2, 865 (2012).
[CrossRef] [PubMed]

Kawata, Y.

Kempe, U.

J. Goetze and U. Kempe, “A comparison of optical microscope- and scanning electron microscope-based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences,” Mineral. Mag.72(4), 909–924 (2008).
[CrossRef]

Kociak, M.

L. H. G. Tizei and M. Kociak, “Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope,” Phys. Rev. Lett.110(15), 153604 (2013).
[CrossRef]

Koenderink, A. F.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional Emission from Plasmonic Yagi-Uda Antennas Probed by Angle-Resolved Cathodoluminescence Spectroscopy,” Nano Lett.11(9), 3779–3784 (2011).
[CrossRef] [PubMed]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. Garcia de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B Condens. Matter79(11), 113405 (2009).
[CrossRef]

Kruit, P.

A. C. Zonnevylle, R. F. C. Van Tol, N. Liv, A. C. Narvaez, A. P. J. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a Scanning Electron Microscope,” J. Microsc.252(1), 58–70 (2013), doi: .
[CrossRef] [PubMed]

N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
[CrossRef] [PubMed]

C. W. Hagen and P. Kruit, “Optimization of focused ion beam performance,” J. Vac. Sci. Technol. B27(6), 2654–2659 (2009).
[CrossRef]

Kumacheva, E.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar Plasmonic Resonances in Silver Nanowire Antennas Imaged with a Subnanometer Electron Probe,” Nano Lett.11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Kuttge, M.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11(9), 781–787 (2012).
[CrossRef] [PubMed]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. Garcia de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B Condens. Matter79(11), 113405 (2009).
[CrossRef]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence Spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Lezec, H. J.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. Garcia de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B Condens. Matter79(11), 113405 (2009).
[CrossRef]

Lichtman, J. W.

D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, “Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours,” Sci. Rep.2, 865 (2012).
[CrossRef] [PubMed]

Lin, S.

Liv, N.

N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
[CrossRef] [PubMed]

A. C. Zonnevylle, R. F. C. Van Tol, N. Liv, A. C. Narvaez, A. P. J. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a Scanning Electron Microscope,” J. Microsc.252(1), 58–70 (2013), doi: .
[CrossRef] [PubMed]

Lo, P. K.

D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, “Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours,” Sci. Rep.2, 865 (2012).
[CrossRef] [PubMed]

Lucas, M. S.

N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
[CrossRef] [PubMed]

MacDonald, K. F.

A. I. Denisyuk, G. Adamo, K. F. MacDonald, J. Edgar, M. D. Arnold, V. Myroshnychenko, M. J. Ford, F. J. García de Abajo, and N. I. Zheludev, “Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed,” Nano Lett.10(9), 3250–3252 (2010).
[CrossRef] [PubMed]

Maruse, S.

A. Ishikawa, F. Mizuno, Y. Uchikawa, and S. Maruse, “High resolution and spectroscopic cathodoluminescent images in Scanning Electron-Microscope,” Jpn. J. Appl. Phys.12(2), 286–292 (1973).
[CrossRef]

Miyakawa, A.

Mizuno, F.

A. Ishikawa, F. Mizuno, Y. Uchikawa, and S. Maruse, “High resolution and spectroscopic cathodoluminescent images in Scanning Electron-Microscope,” Jpn. J. Appl. Phys.12(2), 286–292 (1973).
[CrossRef]

Myroshnychenko, V.

A. I. Denisyuk, G. Adamo, K. F. MacDonald, J. Edgar, M. D. Arnold, V. Myroshnychenko, M. J. Ford, F. J. García de Abajo, and N. I. Zheludev, “Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed,” Nano Lett.10(9), 3250–3252 (2010).
[CrossRef] [PubMed]

Nakano, M.

R. Gomez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” New J. Phys.10(10), 105009 (2008).
[CrossRef]

Narvaez, A. C.

N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
[CrossRef] [PubMed]

A. C. Zonnevylle, R. F. C. Van Tol, N. Liv, A. C. Narvaez, A. P. J. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a Scanning Electron Microscope,” J. Microsc.252(1), 58–70 (2013), doi: .
[CrossRef] [PubMed]

Nawa, Y.

Niioka, H.

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors,” Appl. Phys. Express4(11), 112402 (2011).
[CrossRef]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007).
[CrossRef] [PubMed]

Ono, A.

Park, H.

D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, “Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours,” Sci. Rep.2, 865 (2012).
[CrossRef] [PubMed]

Polman, A.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11(9), 781–787 (2012).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional Emission from Plasmonic Yagi-Uda Antennas Probed by Angle-Resolved Cathodoluminescence Spectroscopy,” Nano Lett.11(9), 3779–3784 (2011).
[CrossRef] [PubMed]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. Garcia de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B Condens. Matter79(11), 113405 (2009).
[CrossRef]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence Spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Renger, J.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11(9), 781–787 (2012).
[CrossRef] [PubMed]

Rossouw, D.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar Plasmonic Resonances in Silver Nanowire Antennas Imaged with a Subnanometer Electron Probe,” Nano Lett.11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Sapienza, R.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11(9), 781–787 (2012).
[CrossRef] [PubMed]

Schalek, R.

D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, “Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours,” Sci. Rep.2, 865 (2012).
[CrossRef] [PubMed]

Sekiguchi, T.

B. Dierre, X. Yuan, and T. Sekiguchi, “Low-energy cathodoluminescence microscopy for the characterization of nanostructures,” Sci. Technol. Adv. Mater.11(4), 043001 (2010).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
[CrossRef] [PubMed]

Terakawa, S.

Tizei, L. H. G.

L. H. G. Tizei and M. Kociak, “Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope,” Phys. Rev. Lett.110(15), 153604 (2013).
[CrossRef]

Trifonov, A. S.

D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, “Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours,” Sci. Rep.2, 865 (2012).
[CrossRef] [PubMed]

Uchikawa, Y.

A. Ishikawa, F. Mizuno, Y. Uchikawa, and S. Maruse, “High resolution and spectroscopic cathodoluminescent images in Scanning Electron-Microscope,” Jpn. J. Appl. Phys.12(2), 286–292 (1973).
[CrossRef]

van Hulst, N. F.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11(9), 781–787 (2012).
[CrossRef] [PubMed]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
[CrossRef] [PubMed]

Van Tol, R. F. C.

A. C. Zonnevylle, R. F. C. Van Tol, N. Liv, A. C. Narvaez, A. P. J. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a Scanning Electron Microscope,” J. Microsc.252(1), 58–70 (2013), doi: .
[CrossRef] [PubMed]

Vesseur, E. J. R.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional Emission from Plasmonic Yagi-Uda Antennas Probed by Angle-Resolved Cathodoluminescence Spectroscopy,” Nano Lett.11(9), 3779–3784 (2011).
[CrossRef] [PubMed]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. Garcia de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B Condens. Matter79(11), 113405 (2009).
[CrossRef]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence Spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Vickery, J.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar Plasmonic Resonances in Silver Nanowire Antennas Imaged with a Subnanometer Electron Probe,” Nano Lett.11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Voorneveld, P. W.

N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
[CrossRef] [PubMed]

Walsworth, R. L.

D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, “Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours,” Sci. Rep.2, 865 (2012).
[CrossRef] [PubMed]

Wepf, R. A.

N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
[CrossRef] [PubMed]

Yamamoto, N.

R. Gomez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” New J. Phys.10(10), 105009 (2008).
[CrossRef]

Yuan, X.

B. Dierre, X. Yuan, and T. Sekiguchi, “Low-energy cathodoluminescence microscopy for the characterization of nanostructures,” Sci. Technol. Adv. Mater.11(4), 043001 (2010).
[CrossRef]

Zhang, H.

D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, “Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours,” Sci. Rep.2, 865 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

A. I. Denisyuk, G. Adamo, K. F. MacDonald, J. Edgar, M. D. Arnold, V. Myroshnychenko, M. J. Ford, F. J. García de Abajo, and N. I. Zheludev, “Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed,” Nano Lett.10(9), 3250–3252 (2010).
[CrossRef] [PubMed]

Zia, R.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
[CrossRef] [PubMed]

Zonnevylle, A. C.

A. C. Zonnevylle, R. F. C. Van Tol, N. Liv, A. C. Narvaez, A. P. J. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a Scanning Electron Microscope,” J. Microsc.252(1), 58–70 (2013), doi: .
[CrossRef] [PubMed]

N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
[CrossRef] [PubMed]

Appl. Phys. Express

H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, “Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors,” Appl. Phys. Express4(11), 112402 (2011).
[CrossRef]

J. Microsc.

A. C. Zonnevylle, R. F. C. Van Tol, N. Liv, A. C. Narvaez, A. P. J. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a Scanning Electron Microscope,” J. Microsc.252(1), 58–70 (2013), doi: .
[CrossRef] [PubMed]

J. Vac. Sci. Technol. B

C. W. Hagen and P. Kruit, “Optimization of focused ion beam performance,” J. Vac. Sci. Technol. B27(6), 2654–2659 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

A. Ishikawa, F. Mizuno, Y. Uchikawa, and S. Maruse, “High resolution and spectroscopic cathodoluminescent images in Scanning Electron-Microscope,” Jpn. J. Appl. Phys.12(2), 286–292 (1973).
[CrossRef]

Mineral. Mag.

J. Goetze and U. Kempe, “A comparison of optical microscope- and scanning electron microscope-based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences,” Mineral. Mag.72(4), 909–924 (2008).
[CrossRef]

Nano Lett.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence Spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional Emission from Plasmonic Yagi-Uda Antennas Probed by Angle-Resolved Cathodoluminescence Spectroscopy,” Nano Lett.11(9), 3779–3784 (2011).
[CrossRef] [PubMed]

A. I. Denisyuk, G. Adamo, K. F. MacDonald, J. Edgar, M. D. Arnold, V. Myroshnychenko, M. J. Ford, F. J. García de Abajo, and N. I. Zheludev, “Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed,” Nano Lett.10(9), 3250–3252 (2010).
[CrossRef] [PubMed]

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar Plasmonic Resonances in Silver Nanowire Antennas Imaged with a Subnanometer Electron Probe,” Nano Lett.11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Nat. Commun.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
[CrossRef] [PubMed]

Nat. Mater.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11(9), 781–787 (2012).
[CrossRef] [PubMed]

New J. Phys.

R. Gomez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” New J. Phys.10(10), 105009 (2008).
[CrossRef]

Opt. Express

Phys. Rev. B Condens. Matter

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. Garcia de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B Condens. Matter79(11), 113405 (2009).
[CrossRef]

Phys. Rev. Lett.

L. H. G. Tizei and M. Kociak, “Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope,” Phys. Rev. Lett.110(15), 153604 (2013).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007).
[CrossRef] [PubMed]

PLoS ONE

N. Liv, A. C. Zonnevylle, A. C. Narvaez, A. P. J. Effting, P. W. Voorneveld, M. S. Lucas, J. C. Hardwick, R. A. Wepf, P. Kruit, and J. P. Hoogenboom, “Simultaneous Correlative Scanning Electron and High-Na Fluorescence Microscopy,” PLoS ONE8(2), e55707 (2013).
[CrossRef] [PubMed]

Rev. Mod. Phys.

F. J. Garcia de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82(1), 209–275 (2010).
[CrossRef]

Sci. Rep.

D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, “Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours,” Sci. Rep.2, 865 (2012).
[CrossRef] [PubMed]

Sci. Technol. Adv. Mater.

B. Dierre, X. Yuan, and T. Sekiguchi, “Low-energy cathodoluminescence microscopy for the characterization of nanostructures,” Sci. Technol. Adv. Mater.11(4), 043001 (2010).
[CrossRef]

Other

L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis: Ludwig Reimer (Springer, 1985).

M. Kuttge, “Cathodoluminescence Plasmon Microscopy,” PhD Thesis at Utrecht University (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Emission profile of a dipole oriented perpendicular to a vacuum/glass (n = 1.55) interface. The red and yellow lines indicate the maximum collection angle for 1.4NA and 0.95NA, respectively. (b) Side view of our integrated microscope, with an inverted objective lens placed below the sample holder and the electron beam column, in the vacuum chamber of a SEM.

Fig. 2
Fig. 2

(a) CL detection system: an objective lens collects the light and sends it outside the SEM vacuum chamber, where flipping mirrors enable a CCD, a PMT or a spectrometer for detection. Top-left inset: optical paths mounted outside the SEM chamber. (b) SEM image and CL maps obtained by scanning with the electron beam when the optical and electron axes are (c) <10µm shifted and (d) when the axes are aligned within 1 µm. The maximum intensity corresponds to the objective lens center position, i.e. the optical axis, while the center of the image gives the electron axis.

Fig. 3
Fig. 3

Nano-phosphors on a glass substrate with an ITO layer: (a) SEM and (b) CL images. The CL intensity is proportional to the particle size and density. The red square highlights a 50nm particle, showed in the inset (horizontal field of view: 200nm). (c) CL map of two 30nm nano-phosphors next to each other. Inset: correlated SEM image (scale bar: 50nm). (d) CL intensity profile along the white dashed line indicated in c.

Fig. 4
Fig. 4

(a) SEM and (b) panchromatic CL images of a gold NW obtained with a 2kV electron beam. (c) Spectral distribution of the CL signal acquired by excitation on a spot over one of the edges of the NW. Top insets: FDTD simulation results for the electric field distribution (x component) along a NW for the different resonant mode orders. The emitter can be seen at the right end of the NW. (d) Measured resonance modes compared with the ones calculated using a Fabry-Pérot resonator model for a NW in air. (e) Red curve: FDTD calculation of the emission wavelength distribution for a (x oriented) dipole located at the edge of a 1440nm long, 70nm width gold NW on top of a 70nm thick ITO layer on glass. The black curve shows the spectra obtained in our measurements.

Fig. 5
Fig. 5

(a) Interaction volume of the electron beam with the sample: light generated from the substrate below the structure will also contribute to the CL signal, as a background. Low inset: typical spectral distribution of the CL generated in a ITO/glass substrate. (b) Monte-Carlo simulations of the electron interaction volume at 2kV (top) and 30kV (bottom) obtained for a SiO2 substrate with a 70nm ITO layer. To illustrate the scale factor between them, the area surrounded by the green square in the 2kV image is projected into a yellow square (dot) in the 30kV plot.

Fig. 6
Fig. 6

Influence of acceleration voltage on the background signal. (a) SEM and (b) CL images of a 50nm phosphor nanoparticle. (c) Intensity profile obtained along the dashed line shown in b. Similar images obtained at (d-f): 5kV and (g-i): 10kV.

Metrics