Abstract

An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backed-up with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene’s damping factor is increased by lowering its electron mobility to 1000cm2/Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24, 98–120 (2012).
  2. S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).
    [CrossRef] [PubMed]
  3. B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express21, 23803–23811 (2013).
    [CrossRef] [PubMed]
  4. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon meta-material,” Opt. Express20, 28017–28024 (2012).
    [CrossRef] [PubMed]
  5. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, and X. Luo, “Strong enhancement of light absorption and highly directive thermal emission in graphene,” Opt. Express21, 11618–11627 (2013).
    [CrossRef] [PubMed]
  6. A. Andryieuski and L. Andrei, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express21, 9144–9155 (2013).
    [CrossRef] [PubMed]
  7. L. Huang, R. C. Dibakar, R. Suchitrai, T. R. Matthew, N. L Sheng, J. T. Antoinette, and C. Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37, 154–156 (2012).
    [CrossRef] [PubMed]
  8. J. W. Park, L. V. Dinh, H. Y. Zheng, J. Y. Rhee, K. W. Kim, and Y. P. Lee, “THz-metamaterial absorbers,” Adv. Nat. Sci: Nanosci. Nanotechnol.4, 015001 (2013).
    [CrossRef]
  9. Q. Y. Wen, W. Z. Hua, S. X. Yun, Y. Qing-Hu, and L. Ying-Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett.95, 241111 (2009).
    [CrossRef]
  10. Y. Q. Ye, J. Yi, and H. Sailing, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27, 498–504 (2010).
    [CrossRef]
  11. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010).
    [CrossRef]
  12. Y. Ma, C. Qin, G. James, C. S. Shimul, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett.36, 945–947 (2011).
    [CrossRef] [PubMed]
  13. R. Taubert, H. Mario, K. Jurgen, and G. Harald, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett.12, 1367–1371 (2012).
    [CrossRef] [PubMed]
  14. R. Adato, A. Alp, E. Shyamsunder, and A. Hatice, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett.13, 2584–2591 (2013).
    [CrossRef] [PubMed]
  15. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
    [CrossRef] [PubMed]
  16. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
    [CrossRef] [PubMed]
  17. H.T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20, 7165–7172 (2012).
    [CrossRef] [PubMed]
  18. L. Huang, R. C. Dibakar, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012).
    [CrossRef]
  19. A. Y Nikitin, F. Guinea, and M. M. Luis, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett.101, 151119 (2012).
    [CrossRef]
  20. M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep.3, 2105 (2013).
    [CrossRef] [PubMed]
  21. S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
    [CrossRef] [PubMed]
  22. Y. Pochi, Optical waves in layered media, (Wiley, 1988).
  23. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
    [CrossRef]
  24. M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev.7, 329–349 (2013).
    [CrossRef]
  25. Microwave, RF, and Optical Design Software, “ http://www.comsol.com/rf-module ”
  26. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
    [CrossRef] [PubMed]
  27. A. E. Siegman, Lasers, (University Science Books, 1986).

2013 (7)

B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express21, 23803–23811 (2013).
[CrossRef] [PubMed]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, and X. Luo, “Strong enhancement of light absorption and highly directive thermal emission in graphene,” Opt. Express21, 11618–11627 (2013).
[CrossRef] [PubMed]

A. Andryieuski and L. Andrei, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express21, 9144–9155 (2013).
[CrossRef] [PubMed]

J. W. Park, L. V. Dinh, H. Y. Zheng, J. Y. Rhee, K. W. Kim, and Y. P. Lee, “THz-metamaterial absorbers,” Adv. Nat. Sci: Nanosci. Nanotechnol.4, 015001 (2013).
[CrossRef]

R. Adato, A. Alp, E. Shyamsunder, and A. Hatice, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett.13, 2584–2591 (2013).
[CrossRef] [PubMed]

M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep.3, 2105 (2013).
[CrossRef] [PubMed]

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev.7, 329–349 (2013).
[CrossRef]

2012 (10)

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

L. Huang, R. C. Dibakar, R. Suchitrai, T. R. Matthew, N. L Sheng, J. T. Antoinette, and C. Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37, 154–156 (2012).
[CrossRef] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon meta-material,” Opt. Express20, 28017–28024 (2012).
[CrossRef] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24, 98–120 (2012).

S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).
[CrossRef] [PubMed]

R. Taubert, H. Mario, K. Jurgen, and G. Harald, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett.12, 1367–1371 (2012).
[CrossRef] [PubMed]

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

H.T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20, 7165–7172 (2012).
[CrossRef] [PubMed]

L. Huang, R. C. Dibakar, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012).
[CrossRef]

A. Y Nikitin, F. Guinea, and M. M. Luis, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett.101, 151119 (2012).
[CrossRef]

2011 (3)

Y. Ma, C. Qin, G. James, C. S. Shimul, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett.36, 945–947 (2011).
[CrossRef] [PubMed]

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

2010 (3)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Y. Q. Ye, J. Yi, and H. Sailing, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27, 498–504 (2010).
[CrossRef]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010).
[CrossRef]

2009 (1)

Q. Y. Wen, W. Z. Hua, S. X. Yun, Y. Qing-Hu, and L. Ying-Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett.95, 241111 (2009).
[CrossRef]

Adato, R.

R. Adato, A. Alp, E. Shyamsunder, and A. Hatice, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett.13, 2584–2591 (2013).
[CrossRef] [PubMed]

Alaee, R.

Alp, A.

R. Adato, A. Alp, E. Shyamsunder, and A. Hatice, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett.13, 2584–2591 (2013).
[CrossRef] [PubMed]

Amin, M.

M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep.3, 2105 (2013).
[CrossRef] [PubMed]

Andrei, L.

Andryieuski, A.

Antoinette, J. T.

Averitt, R. D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010).
[CrossRef]

Azad, A. K.

L. Huang, R. C. Dibakar, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012).
[CrossRef]

Bagci, H.

M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep.3, 2105 (2013).
[CrossRef] [PubMed]

Bingham, C. M.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010).
[CrossRef]

Blake, P.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

Britnell, L.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

Chen, H.T.

Chen, P.

Chen., H. T.

L. Huang, R. C. Dibakar, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012).
[CrossRef]

Choi, C. G.

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

Choi, H. K.

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

Choi, S. Y.

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Colombo, L.

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

Cumming, D. R. S.

de Abajo, F. J. G.

S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).
[CrossRef] [PubMed]

Dibakar, R. C.

L. Huang, R. C. Dibakar, R. Suchitrai, T. R. Matthew, N. L Sheng, J. T. Antoinette, and C. Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37, 154–156 (2012).
[CrossRef] [PubMed]

L. Huang, R. C. Dibakar, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012).
[CrossRef]

Dinh, L. V.

J. W. Park, L. V. Dinh, H. Y. Zheng, J. Y. Rhee, K. W. Kim, and Y. P. Lee, “THz-metamaterial absorbers,” Adv. Nat. Sci: Nanosci. Nanotechnol.4, 015001 (2013).
[CrossRef]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

Falko, V. I.

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

Fan, K.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010).
[CrossRef]

Farhat, M.

M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep.3, 2105 (2013).
[CrossRef] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon meta-material,” Opt. Express20, 28017–28024 (2012).
[CrossRef] [PubMed]

Geim, A. K.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

Gellert, P. R.

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Gorbachev, R. V.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

Gu, C. Q.

Guinea, F.

A. Y Nikitin, F. Guinea, and M. M. Luis, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett.101, 151119 (2012).
[CrossRef]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Harald, G.

R. Taubert, H. Mario, K. Jurgen, and G. Harald, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett.12, 1367–1371 (2012).
[CrossRef] [PubMed]

Hatice, A.

R. Adato, A. Alp, E. Shyamsunder, and A. Hatice, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett.13, 2584–2591 (2013).
[CrossRef] [PubMed]

Hong, M.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev.7, 329–349 (2013).
[CrossRef]

Hou-Tong, C.

Hu, C.

Hua, W. Z.

Q. Y. Wen, W. Z. Hua, S. X. Yun, Y. Qing-Hu, and L. Ying-Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett.95, 241111 (2009).
[CrossRef]

Huang, C.

Huang, L.

L. Huang, R. C. Dibakar, R. Suchitrai, T. R. Matthew, N. L Sheng, J. T. Antoinette, and C. Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37, 154–156 (2012).
[CrossRef] [PubMed]

L. Huang, R. C. Dibakar, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012).
[CrossRef]

Jalil, R.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

James, G.

Jurgen, K.

R. Taubert, H. Mario, K. Jurgen, and G. Harald, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett.12, 1367–1371 (2012).
[CrossRef] [PubMed]

Khalid, A.

Kim, K.

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

Kim, K. W.

J. W. Park, L. V. Dinh, H. Y. Zheng, J. Y. Rhee, K. W. Kim, and Y. P. Lee, “THz-metamaterial absorbers,” Adv. Nat. Sci: Nanosci. Nanotechnol.4, 015001 (2013).
[CrossRef]

Kim, T. T.

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

Koppens, F. H.

S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).
[CrossRef] [PubMed]

Lederer, F.

Lee, S.

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

Lee, S. H.

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

Lee, S. S.

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

Lee, Y. P.

J. W. Park, L. V. Dinh, H. Y. Zheng, J. Y. Rhee, K. W. Kim, and Y. P. Lee, “THz-metamaterial absorbers,” Adv. Nat. Sci: Nanosci. Nanotechnol.4, 015001 (2013).
[CrossRef]

Li, Z.

Liu, M.

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24, 98–120 (2012).

Luis, M. M.

A. Y Nikitin, F. Guinea, and M. M. Luis, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett.101, 151119 (2012).
[CrossRef]

Luk’yanchuk, B.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev.7, 329–349 (2013).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Luo, S. N.

L. Huang, R. C. Dibakar, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012).
[CrossRef]

Luo, X.

Ma, Y.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Mario, H.

R. Taubert, H. Mario, K. Jurgen, and G. Harald, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett.12, 1367–1371 (2012).
[CrossRef] [PubMed]

Matthew, T. R.

Mayorov, A. S.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

Min, B.

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

Morozov, S. V.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

Muhan, C.

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

Nikitin, A. Y

A. Y Nikitin, F. Guinea, and M. M. Luis, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett.101, 151119 (2012).
[CrossRef]

Niu, Z. Y.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Novoselov, K. S.

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24, 98–120 (2012).

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010).
[CrossRef]

Park, J. W.

J. W. Park, L. V. Dinh, H. Y. Zheng, J. Y. Rhee, K. W. Kim, and Y. P. Lee, “THz-metamaterial absorbers,” Adv. Nat. Sci: Nanosci. Nanotechnol.4, 015001 (2013).
[CrossRef]

Pilon, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010).
[CrossRef]

Pochi, Y.

Y. Pochi, Optical waves in layered media, (Wiley, 1988).

Ponomarenko, L. A.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

Pu, M.

Qin, C.

Qing-Hu, Y.

Q. Y. Wen, W. Z. Hua, S. X. Yun, Y. Qing-Hu, and L. Ying-Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett.95, 241111 (2009).
[CrossRef]

Rahmani, M.

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev.7, 329–349 (2013).
[CrossRef]

Ramani, S.

L. Huang, R. C. Dibakar, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012).
[CrossRef]

Reiten, M. T.

L. Huang, R. C. Dibakar, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012).
[CrossRef]

Rhee, J. Y.

J. W. Park, L. V. Dinh, H. Y. Zheng, J. Y. Rhee, K. W. Kim, and Y. P. Lee, “THz-metamaterial absorbers,” Adv. Nat. Sci: Nanosci. Nanotechnol.4, 015001 (2013).
[CrossRef]

Rockstuhl, C.

Sailing, H.

Schwab, M. G.

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

Sheng, N. L

Shimul, C. S.

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010).
[CrossRef]

Shyamsunder, E.

R. Adato, A. Alp, E. Shyamsunder, and A. Hatice, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett.13, 2584–2591 (2013).
[CrossRef] [PubMed]

Siegman, A. E.

A. E. Siegman, Lasers, (University Science Books, 1986).

Strikwerda, A. C.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010).
[CrossRef]

Suchitrai, R.

Taniguchi, T.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

Tao, H.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010).
[CrossRef]

Taubert, R.

R. Taubert, H. Mario, K. Jurgen, and G. Harald, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett.12, 1367–1371 (2012).
[CrossRef] [PubMed]

Taylor, A. J.

L. Huang, R. C. Dibakar, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012).
[CrossRef]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).
[CrossRef] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

Wang, C.

Wang, Y.

Watanabe, K.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24, 98–120 (2012).

Wen, Q. Y.

Q. Y. Wen, W. Z. Hua, S. X. Yun, Y. Qing-Hu, and L. Ying-Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett.95, 241111 (2009).
[CrossRef]

Xu, B. Z.

Ye, Y. Q.

Yi, J.

Yin, X.

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

Ying-Li, L.

Q. Y. Wen, W. Z. Hua, S. X. Yun, Y. Qing-Hu, and L. Ying-Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett.95, 241111 (2009).
[CrossRef]

Yun, S. X.

Q. Y. Wen, W. Z. Hua, S. X. Yun, Y. Qing-Hu, and L. Ying-Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett.95, 241111 (2009).
[CrossRef]

Zhang, X.

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010).
[CrossRef]

Zhao, Z.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Zheng, H. Y.

J. W. Park, L. V. Dinh, H. Y. Zheng, J. Y. Rhee, K. W. Kim, and Y. P. Lee, “THz-metamaterial absorbers,” Adv. Nat. Sci: Nanosci. Nanotechnol.4, 015001 (2013).
[CrossRef]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24, 98–120 (2012).

Adv. Nat. Sci: Nanosci. Nanotechnol. (1)

J. W. Park, L. V. Dinh, H. Y. Zheng, J. Y. Rhee, K. W. Kim, and Y. P. Lee, “THz-metamaterial absorbers,” Adv. Nat. Sci: Nanosci. Nanotechnol.4, 015001 (2013).
[CrossRef]

Appl. Phys. Lett. (3)

Q. Y. Wen, W. Z. Hua, S. X. Yun, Y. Qing-Hu, and L. Ying-Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett.95, 241111 (2009).
[CrossRef]

L. Huang, R. C. Dibakar, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen., “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett.101, 101102 (2012).
[CrossRef]

A. Y Nikitin, F. Guinea, and M. M. Luis, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett.101, 151119 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys.43, 225102 (2010).
[CrossRef]

Laser Photon. Rev. (1)

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev.7, 329–349 (2013).
[CrossRef]

Nano Lett. (3)

R. Taubert, H. Mario, K. Jurgen, and G. Harald, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett.12, 1367–1371 (2012).
[CrossRef] [PubMed]

R. Adato, A. Alp, E. Shyamsunder, and A. Hatice, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett.13, 2584–2591 (2013).
[CrossRef] [PubMed]

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011).
[CrossRef] [PubMed]

Nat. Mater. (2)

S. H. Lee, C. Muhan, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11, 936–941 (2012).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Nature (1)

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).
[CrossRef] [PubMed]

Sci. Rep. (1)

M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep.3, 2105 (2013).
[CrossRef] [PubMed]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

Other (3)

A. E. Siegman, Lasers, (University Science Books, 1986).

Y. Pochi, Optical waves in layered media, (Wiley, 1988).

Microwave, RF, and Optical Design Software, “ http://www.comsol.com/rf-module ”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The schematic diagram of the proposed absorber with three layers of graphene.

Fig. 2
Fig. 2

Description of the transmission line model for the multilayered absorber.

Fig. 3
Fig. 3

The graphene unit cell with an asymmetric void with its dimensions.

Fig. 4
Fig. 4

(a) Transmittance, reflectance, and absorption of a single layer of patterned graphene for μc = 1000eV and μ = 10, 000cm2/Vs. (b) Normalized surface charge density distribution on the unit cell at the frequency points identified on the curve. (c) Transmittance and (d) reflectance spectra of the patterned graphene layer for varying values of μc. The color bar represents the value of transmittance in (c) and reflectance in (d).

Fig. 5
Fig. 5

(a) Absorption spectra of the one-layer design with varying values of d1 and various values of μc. (b) Absorption spectra of the one-layer design with varying values of μc and various values of d1. The color bar represents the value of absorption. (c) Absorption of the one-layer design with μc = 500meV and d1 = 100 μm exhibiting multiple resonances due to smaller FSR= 0.95THz.

Fig. 6
Fig. 6

(a) Absorption spectra of the one-layer design with varying values of d1 and various values of μ. The color bar represents the value of absorption. (b) Relationship between the absorption maximum and the bandwidth of 90% absorption as a function of μ. (c) The absorption spectra of the one-layer design with μ = 1000cm2/Vs and d1 = 5 μm.

Fig. 7
Fig. 7

Absorption spectra of the two-layer design with (a) varying values of d1 and various values of d2 and (b) varying values of d2 and various values of d1. The color bar represents the value of absorption in (a) and (b).

Fig. 8
Fig. 8

(a) FOM of the two-layer design as a function of d1 and d2. (b) The absorption spectra of the two-layer design with d1 = 0.5 μm and d2 = 5.45 μm. The color bar represents the absolute value of FOM.

Fig. 9
Fig. 9

The absorption spectra of the three-layer design with d1 = 0.67 μm, d2 = 0.5 μm, and d3 = 4.78 μm.

Tables (1)

Tables Icon

Table 1 Comparison between bandwidths of 90% absorption at THz frequencies. Studies marked with * describe multiple bands of absorption above 90%.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A = 1 | Γ 1 | 2 ,
Γ 1 = r 12 + t 21 t 12 Γ 2 e i 2 ϕ 1 1 r 21 Γ 2 e i 2 ϕ 1 Γ 2 = r 23 + t 32 t 23 Γ 3 e i 2 ϕ 2 1 r 32 Γ 3 e i 2 ϕ 2 Γ 3 = r 34 + t 43 t 34 r 45 e i 2 ϕ 3 1 r 43 r 45 e i 2 ϕ 3 .
ε G ( ω ) = 1 + j σ G ( ω ) ε 0 ω ω P 2 ω ( ω + j γ / ) ,
FOM ( d 1 , d 2 ) = 4 THz 12 THz A d f
FOM ( d 1 , d 2 , d 3 ) = 4 THz 12 THz A d f

Metrics