Abstract

We report the characteristics of low-loss chalcogenide waveguides for sensing in the mid-infrared (MIR). The waveguides consisted of a Ge11.5As24Se64.5 rib waveguide core with a 10nm fluoropolymer coating on a Ge11.5As24S64.5 bottom cladding and were fabricated by thermal evaporation, photolithography and ICP plasma etching. Over most of the functional group band from 1500 to 4000cm−1 the losses were < 1dB/cm with a minimum of 0.3dB/cm at 2000cm−1. The basic capabilities of these waveguides for spectroscopy were demonstrated by measuring the absorption spectrum of soluble Prussian blue in Dimethyl Sulphoxide.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  2. C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett.35(20), 3324–3326 (2010).
    [CrossRef] [PubMed]
  3. J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
    [CrossRef] [PubMed]
  4. J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express15(19), 11798–11807 (2007).
    [CrossRef] [PubMed]
  5. A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
    [CrossRef]
  6. J. J. Hu, V. Tarasov, N. Carlie, R. Sun, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss integrated planar chalcogenide waveguides for microfluidic chemical sensing - art. no. 64440N,” In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 6444, (2007).
  7. J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem.173, 468–476 (2012).
    [CrossRef]
  8. X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. P. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18(25), 26635–26646 (2010).
    [CrossRef] [PubMed]
  9. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010).
    [CrossRef] [PubMed]
  10. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett.31(12), 1860–1862 (2006).
    [CrossRef] [PubMed]
  11. J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett.33(21), 2500–2502 (2008).
    [CrossRef] [PubMed]
  12. J. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass Microdisk resonators: experiment and analysis,” J. Lightwave Technol.27(23), 5240–5245 (2009).
    [CrossRef]
  13. J. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films,” Opt. Mater.30(10), 1560–1566 (2008).
    [CrossRef]
  14. D. Y. Choi, S. Madden, A. Rode, R. Wang, and B. Luther-Davies, “Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides,” Appl. Phys. Lett.91(1), 011115 (2007).
    [CrossRef]
  15. D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear Optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
    [CrossRef]
  16. J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express18(2), 1469–1478 (2010).
    [CrossRef] [PubMed]
  17. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010).
    [CrossRef] [PubMed]
  18. C. Tsay, Y. L. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010).
    [CrossRef] [PubMed]
  19. J. J. Hu, X. C. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B26(5), 1032–1041 (2009).
    [CrossRef]
  20. K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
    [CrossRef]
  21. H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
    [CrossRef] [PubMed]
  22. H. T. Lin, L. Li, F. Deng, C. Y. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett.38(15), 2779–2782 (2013).
    [CrossRef] [PubMed]
  23. A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
    [CrossRef]
  24. S. Arai, K. Tsujimoto, and S. Tachi, “Deposition in dry-Etching gas plasmas,” Jpn. J. Appl. Phys.31(Part 1, No. 6B), 2011–2019 (1992).
    [CrossRef]
  25. X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express18(18), 18866–18874 (2010).
    [CrossRef] [PubMed]
  26. K. Vu, K. L. Yan, Z. Jin, X. Gai, D. Y. Choi, S. Debbarma, B. Luther-Davies, and S. Madden, “Hybrid waveguide from As2S3 and Er-doped TeO2 for lossless nonlinear optics,” Opt. Lett.38(11), 1766–1768 (2013).
    [CrossRef] [PubMed]
  27. D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys A96(3), 615–625 (2009).
    [CrossRef]
  28. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008).
    [CrossRef] [PubMed]
  29. X. Gai, D. Y. Choi, S. Madden, Z. Y. Yang, R. P. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett.37(18), 3870–3872 (2012).
    [CrossRef] [PubMed]
  30. V. Z. Kolev, M. W. Duering, B. Luther-Davies, and A. V. Rode, “Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials,” Opt. Express14(25), 12302–12309 (2006).
    [CrossRef] [PubMed]
  31. P. J. Astell-Burt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon Rf Plasmas,” Plasma Chem. Plasma Process.6(4), 417–427 (1986).
    [CrossRef]
  32. http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/IMG.cgi?imgdir=ir&fname=NIDA63111&sdbsno=2459 ; http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/IMG.cgi?imgdir=ir&fname=NIDA28032&sdbsno=21514 .

2013 (3)

2012 (2)

X. Gai, D. Y. Choi, S. Madden, Z. Y. Yang, R. P. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett.37(18), 3870–3872 (2012).
[CrossRef] [PubMed]

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem.173, 468–476 (2012).
[CrossRef]

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

2010 (9)

C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett.35(20), 3324–3326 (2010).
[CrossRef] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. P. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18(25), 26635–26646 (2010).
[CrossRef] [PubMed]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear Optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010).
[CrossRef] [PubMed]

C. Tsay, Y. L. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010).
[CrossRef] [PubMed]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
[CrossRef]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (4)

J. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films,” Opt. Mater.30(10), 1560–1566 (2008).
[CrossRef]

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett.33(21), 2500–2502 (2008).
[CrossRef] [PubMed]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

2007 (3)

2006 (3)

1992 (1)

S. Arai, K. Tsujimoto, and S. Tachi, “Deposition in dry-Etching gas plasmas,” Jpn. J. Appl. Phys.31(Part 1, No. 6B), 2011–2019 (1992).
[CrossRef]

1986 (1)

P. J. Astell-Burt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon Rf Plasmas,” Plasma Chem. Plasma Process.6(4), 417–427 (1986).
[CrossRef]

Agarwal, A.

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
[CrossRef]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

J. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass Microdisk resonators: experiment and analysis,” J. Lightwave Technol.27(23), 5240–5245 (2009).
[CrossRef]

J. J. Hu, X. C. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B26(5), 1032–1041 (2009).
[CrossRef]

J. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films,” Opt. Mater.30(10), 1560–1566 (2008).
[CrossRef]

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett.33(21), 2500–2502 (2008).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express15(19), 11798–11807 (2007).
[CrossRef] [PubMed]

Allen, P. J.

Anderson, T.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
[CrossRef]

Anheier, N. C.

Arai, S.

S. Arai, K. Tsujimoto, and S. Tachi, “Deposition in dry-Etching gas plasmas,” Jpn. J. Appl. Phys.31(Part 1, No. 6B), 2011–2019 (1992).
[CrossRef]

Arnold, C. B.

Astell-Burt, P. J.

P. J. Astell-Burt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon Rf Plasmas,” Plasma Chem. Plasma Process.6(4), 417–427 (1986).
[CrossRef]

Brandily, M. L.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem.173, 468–476 (2012).
[CrossRef]

Bulla, D.

Bulla, D. A.

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear Optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

Bulla, D. A. P.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys A96(3), 615–625 (2009).
[CrossRef]

Bureau, B.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem.173, 468–476 (2012).
[CrossRef]

Cairns, J. A.

P. J. Astell-Burt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon Rf Plasmas,” Plasma Chem. Plasma Process.6(4), 417–427 (1986).
[CrossRef]

Canciamilla, A.

Carlie, N.

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
[CrossRef]

J. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass Microdisk resonators: experiment and analysis,” J. Lightwave Technol.27(23), 5240–5245 (2009).
[CrossRef]

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett.33(21), 2500–2502 (2008).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films,” Opt. Mater.30(10), 1560–1566 (2008).
[CrossRef]

J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express15(19), 11798–11807 (2007).
[CrossRef] [PubMed]

Charrier, J.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem.173, 468–476 (2012).
[CrossRef]

Cheetham, A. K.

P. J. Astell-Burt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon Rf Plasmas,” Plasma Chem. Plasma Process.6(4), 417–427 (1986).
[CrossRef]

Choi, D. Y.

Danto, S.

Debbarma, S.

Deng, F.

Ding, Y. J.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Duering, M. W.

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Feng, N. N.

Gai, X.

Ganjoo, A.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Gmachl, C. F.

Han, T.

Hazel, R. M.

P. J. Astell-Burt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon Rf Plasmas,” Plasma Chem. Plasma Process.6(4), 417–427 (1986).
[CrossRef]

Hô, N.

Hu, J.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
[CrossRef]

Hu, J. J.

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

H. T. Lin, L. Li, F. Deng, C. Y. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett.38(15), 2779–2782 (2013).
[CrossRef] [PubMed]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

J. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass Microdisk resonators: experiment and analysis,” J. Lightwave Technol.27(23), 5240–5245 (2009).
[CrossRef]

J. J. Hu, X. C. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B26(5), 1032–1041 (2009).
[CrossRef]

J. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films,” Opt. Mater.30(10), 1560–1566 (2008).
[CrossRef]

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett.33(21), 2500–2502 (2008).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express15(19), 11798–11807 (2007).
[CrossRef] [PubMed]

Irudayaraj, J.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Jain, H.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Jin, Z.

Kimerling, L.

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
[CrossRef]

J. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films,” Opt. Mater.30(10), 1560–1566 (2008).
[CrossRef]

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett.33(21), 2500–2502 (2008).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express15(19), 11798–11807 (2007).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

Kimerling, L. C.

Kolev, V. Z.

Kozacik, S.

Krishnaswami, K.

Lhermite, H.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem.173, 468–476 (2012).
[CrossRef]

Li, L.

Lin, H. T.

Lin, P. T.

Luther-Davies, B.

K. Vu, K. L. Yan, Z. Jin, X. Gai, D. Y. Choi, S. Debbarma, B. Luther-Davies, and S. Madden, “Hybrid waveguide from As2S3 and Er-doped TeO2 for lossless nonlinear optics,” Opt. Lett.38(11), 1766–1768 (2013).
[CrossRef] [PubMed]

X. Gai, D. Y. Choi, S. Madden, Z. Y. Yang, R. P. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett.37(18), 3870–3872 (2012).
[CrossRef] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. P. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18(25), 26635–26646 (2010).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear Optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys A96(3), 615–625 (2009).
[CrossRef]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. Wang, and B. Luther-Davies, “Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides,” Appl. Phys. Lett.91(1), 011115 (2007).
[CrossRef]

V. Z. Kolev, M. W. Duering, B. Luther-Davies, and A. V. Rode, “Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials,” Opt. Express14(25), 12302–12309 (2006).
[CrossRef] [PubMed]

Luzinov, I.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
[CrossRef]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

Madden, S.

K. Vu, K. L. Yan, Z. Jin, X. Gai, D. Y. Choi, S. Debbarma, B. Luther-Davies, and S. Madden, “Hybrid waveguide from As2S3 and Er-doped TeO2 for lossless nonlinear optics,” Opt. Lett.38(11), 1766–1768 (2013).
[CrossRef] [PubMed]

X. Gai, D. Y. Choi, S. Madden, Z. Y. Yang, R. P. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett.37(18), 3870–3872 (2012).
[CrossRef] [PubMed]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. P. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18(25), 26635–26646 (2010).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear Optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. Wang, and B. Luther-Davies, “Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides,” Appl. Phys. Lett.91(1), 011115 (2007).
[CrossRef]

Madden, S. J.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys A96(3), 615–625 (2009).
[CrossRef]

Madsen, C. K.

Melloni, A.

Michel, K.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem.173, 468–476 (2012).
[CrossRef]

Morichetti, F.

Mujagic, E.

Murakowski, M.

Musgraves, J. D.

Myers, T. L.

Nazabal, V.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem.173, 468–476 (2012).
[CrossRef]

Ni, C. Y.

Pantano, C. G.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Petit, L.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
[CrossRef]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

J. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass Microdisk resonators: experiment and analysis,” J. Lightwave Technol.27(23), 5240–5245 (2009).
[CrossRef]

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett.33(21), 2500–2502 (2008).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films,” Opt. Mater.30(10), 1560–1566 (2008).
[CrossRef]

J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express15(19), 11798–11807 (2007).
[CrossRef] [PubMed]

Phillips, M. C.

Prasad, A.

Prather, D.

Qiao, H.

Richardson, K.

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

H. T. Lin, L. Li, F. Deng, C. Y. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett.38(15), 2779–2782 (2013).
[CrossRef] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
[CrossRef]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

J. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass Microdisk resonators: experiment and analysis,” J. Lightwave Technol.27(23), 5240–5245 (2009).
[CrossRef]

J. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films,” Opt. Mater.30(10), 1560–1566 (2008).
[CrossRef]

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett.33(21), 2500–2502 (2008).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express15(19), 11798–11807 (2007).
[CrossRef] [PubMed]

Richardson, M.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
[CrossRef]

Riley, B. J.

Rode, A.

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear Optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

D. Y. Choi, S. Madden, A. Rode, R. Wang, and B. Luther-Davies, “Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides,” Appl. Phys. Lett.91(1), 011115 (2007).
[CrossRef]

Rode, A. V.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys A96(3), 615–625 (2009).
[CrossRef]

V. Z. Kolev, M. W. Duering, B. Luther-Davies, and A. V. Rode, “Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials,” Opt. Express14(25), 12302–12309 (2006).
[CrossRef] [PubMed]

Ryan, J. V.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Singh, V.

Smith, A.

Song, R.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Sun, X. C.

Tachi, S.

S. Arai, K. Tsujimoto, and S. Tachi, “Deposition in dry-Etching gas plasmas,” Jpn. J. Appl. Phys.31(Part 1, No. 6B), 2011–2019 (1992).
[CrossRef]

Tarasov, V.

Toor, F.

Tsay, C.

Tsujimoto, K.

S. Arai, K. Tsujimoto, and S. Tachi, “Deposition in dry-Etching gas plasmas,” Jpn. J. Appl. Phys.31(Part 1, No. 6B), 2011–2019 (1992).
[CrossRef]

Verger, F.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem.173, 468–476 (2012).
[CrossRef]

Vu, K.

Wang, R.

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear Optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

D. Y. Choi, S. Madden, A. Rode, R. Wang, and B. Luther-Davies, “Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides,” Appl. Phys. Lett.91(1), 011115 (2007).
[CrossRef]

Wang, R. P.

Yan, K. L.

Yang, Z. Y.

Yu, C.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Zdyrko, B.

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
[CrossRef]

Zha, C. J.

Zha, Y. L.

Zou, Y.

Appl Phys A (1)

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys A96(3), 615–625 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

D. Y. Choi, S. Madden, A. Rode, R. Wang, and B. Luther-Davies, “Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides,” Appl. Phys. Lett.91(1), 011115 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear Optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (2)

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S. Arai, K. Tsujimoto, and S. Tachi, “Deposition in dry-Etching gas plasmas,” Jpn. J. Appl. Phys.31(Part 1, No. 6B), 2011–2019 (1992).
[CrossRef]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Opt. Express (10)

V. Z. Kolev, M. W. Duering, B. Luther-Davies, and A. V. Rode, “Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials,” Opt. Express14(25), 12302–12309 (2006).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express15(19), 11798–11807 (2007).
[CrossRef] [PubMed]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010).
[CrossRef] [PubMed]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. P. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18(25), 26635–26646 (2010).
[CrossRef] [PubMed]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

C. Tsay, Y. L. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010).
[CrossRef] [PubMed]

Opt. Lett. (7)

X. Gai, D. Y. Choi, S. Madden, Z. Y. Yang, R. P. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett.37(18), 3870–3872 (2012).
[CrossRef] [PubMed]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

K. Vu, K. L. Yan, Z. Jin, X. Gai, D. Y. Choi, S. Debbarma, B. Luther-Davies, and S. Madden, “Hybrid waveguide from As2S3 and Er-doped TeO2 for lossless nonlinear optics,” Opt. Lett.38(11), 1766–1768 (2013).
[CrossRef] [PubMed]

H. T. Lin, L. Li, F. Deng, C. Y. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett.38(15), 2779–2782 (2013).
[CrossRef] [PubMed]

C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett.35(20), 3324–3326 (2010).
[CrossRef] [PubMed]

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett.33(21), 2500–2502 (2008).
[CrossRef] [PubMed]

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett.31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

Opt. Mater. (1)

J. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films,” Opt. Mater.30(10), 1560–1566 (2008).
[CrossRef]

Plasma Chem. Plasma Process. (1)

P. J. Astell-Burt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon Rf Plasmas,” Plasma Chem. Plasma Process.6(4), 417–427 (1986).
[CrossRef]

Sens. Actuators B Chem. (1)

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem.173, 468–476 (2012).
[CrossRef]

Other (2)

J. J. Hu, V. Tarasov, N. Carlie, R. Sun, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss integrated planar chalcogenide waveguides for microfluidic chemical sensing - art. no. 64440N,” In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 6444, (2007).

http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/IMG.cgi?imgdir=ir&fname=NIDA63111&sdbsno=2459 ; http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/IMG.cgi?imgdir=ir&fname=NIDA28032&sdbsno=21514 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic representation of the waveguide for sensing. (b) SEM image of the waveguide.

Fig. 2
Fig. 2

(a) Loss as a function of wavelength for Ge11.5As24Se64.5 rib waveguides on TOx wafer with different thickness of fluoropolymer. These data identify overtone absorption bands between 3.75µm and 5µm in the fluoropolymer. (b) Loss as a function of fluoropolymer thickness.

Fig. 3
Fig. 3

Loss as a function of wavelength for a Ge11.5As24Se64.5 rib waveguides core on a Ge11.5As24S64.5 bottom cladding with no fluoropolymer coating.

Fig. 4
Fig. 4

(a) Loss as a function of wavelength for Ge11.5As24Se64.5 rib waveguide core on Ge11.5As24S64.5 bottom cladding with 10nm tick fluoropolymer coating. The gaps in the spectrum were due to the unavailability of sources in these regions. (b) Comparison of long wavelength absorption for a waveguide with 10nm and 50nm thick fluoropolymer coating.

Fig. 5
Fig. 5

Schematic of MIR sensing scheme based on a chalcogenide planar waveguides and tunable laser source.

Fig. 6
Fig. 6

(a) Loss spectrum of DMSO (blue) and PB in DMSO (red). (b) Loss spectrum of PB in DMSO corrected for wavelength dependence of power in the sensing region.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n S e 2 ( λ ) = 1 + 5.78525 λ 2 λ 2 0.28795 2 + 0.39705 λ 2 λ 2 30.39338 2
n S 2 ( λ ) = 1 + 4.18011 λ 2 λ 2 0.31679 2 + 0.35895 λ 2 λ 2 22.77018 2

Metrics