Abstract

We demonstrate a method for the combination of UV-lithography and direct laser writing using two-photon polymerization (2PP-DLW). First a dye doped photoresist is used for UV-lithography. Adding an undoped photoresist on top of the developed structures enables three-dimensional alignment of the 2PP-DLW structures by detecting the spatially varying fluorescence of the two photoresists. Using this approach we show three dimensional alignment by adding 3D structures made by 2PP-DLW to a previously UV-exposed structure. Furthermore, a fluidic system with an integrated total internal reflection mirror to observe particles in a microfluidic channel is demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Madou, Manufacturing Techniques for Microfabrication and Nanotechnology (CRC, 2012).
  2. C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng.13(2), 170–177 (2003).
    [CrossRef]
  3. W. Ehrfeld, “Recent developments in deep x-ray lithography,” J. Vac. Sci. Technol. B16(6), 3526 (1998).
    [CrossRef]
  4. A. Neumeister, “Properties of three-dimensional precision objects fabricated by using laser based micro stereo lithography,” J. Laser Micro. Nanoeng.3(2), 67–72 (2008).
    [CrossRef]
  5. A. Bertsch, P. Bernhard, C. Vogt, and P. Renaud, “Rapid prototyping of small size objects,” Rapid Prototyping J.6(4), 259–266 (2000).
    [CrossRef]
  6. A. Bertsch, H. Lorenz, and P. Renaud, “3D microfabrication by combining microstereolithography and thick resist UV lithography,” Sens. Actuators A73(1–2), 14–23 (1999).
  7. S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
    [CrossRef]
  8. F. Romanato, R. Kumar, and E. Di Fabrizio, “Interface lithography: a hybrid lithographic approach for the fabrication of patterns embedded in three-dimensional structures,” Nanotechnology16(1), 40–46 (2005).
    [CrossRef]
  9. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533, 1–31 (2013).
  10. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  11. A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: A new approach to micromachining,” Photonics Spectra (2006).
  12. O. P. Parida and B. Navakant, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Int. Conf. on Opt. and Photon.(CSIO) (2009), pp. 4–7.
  13. B. J. Jung, H. J. Kong, B. G. Jeon, D.-Y. Yang, Y. Son, and K.-S. Lee, “Autofocusing method using fluorescence detection for precise two-photon nanofabrication,” Opt. Express19(23), 22659–22668 (2011).
    [CrossRef] [PubMed]
  14. H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, “Fabrication of complex three-dimensional microchannel systems in PDMS,” J. Am. Chem. Soc.125(2), 554–559 (2003).
    [CrossRef] [PubMed]
  15. T. Woggon, T. Kleiner, M. Punke, and U. Lemmer, “Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization,” Opt. Express17(4), 2500–2507 (2009).
    [CrossRef] [PubMed]
  16. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003).
    [CrossRef] [PubMed]
  17. K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
    [CrossRef]
  18. M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
    [CrossRef]
  19. A. Fischer, C. Cremer, and E. H. Stelzer, “Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser,” Appl. Opt.34(12), 1989–2003 (1995).
    [CrossRef] [PubMed]
  20. C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” ChemPhysChem6(5), 791–804 (2005).
    [CrossRef] [PubMed]
  21. S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip12(1), 197–203 (2012).
    [CrossRef] [PubMed]
  22. H. Yamada, Y. Yoshida, and N. Terada, “Blood cell counter in gravity-driven microchannel,” Jpn. J. Appl. Phys.44(12), 8739–8741 (2005).
    [CrossRef]
  23. S. Inoué and K. R. Spring, Video Microscopy: The Fundamentals (Plenum, 1997), p. 741.
  24. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
    [CrossRef]

2013 (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533, 1–31 (2013).

2012 (1)

S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip12(1), 197–203 (2012).
[CrossRef] [PubMed]

2011 (1)

2009 (1)

2008 (2)

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
[CrossRef]

A. Neumeister, “Properties of three-dimensional precision objects fabricated by using laser based micro stereo lithography,” J. Laser Micro. Nanoeng.3(2), 67–72 (2008).
[CrossRef]

2007 (1)

L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
[CrossRef]

2006 (1)

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

2005 (3)

F. Romanato, R. Kumar, and E. Di Fabrizio, “Interface lithography: a hybrid lithographic approach for the fabrication of patterns embedded in three-dimensional structures,” Nanotechnology16(1), 40–46 (2005).
[CrossRef]

C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” ChemPhysChem6(5), 791–804 (2005).
[CrossRef] [PubMed]

H. Yamada, Y. Yoshida, and N. Terada, “Blood cell counter in gravity-driven microchannel,” Jpn. J. Appl. Phys.44(12), 8739–8741 (2005).
[CrossRef]

2003 (3)

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003).
[CrossRef] [PubMed]

H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, “Fabrication of complex three-dimensional microchannel systems in PDMS,” J. Am. Chem. Soc.125(2), 554–559 (2003).
[CrossRef] [PubMed]

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng.13(2), 170–177 (2003).
[CrossRef]

2002 (1)

M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
[CrossRef]

2000 (1)

A. Bertsch, P. Bernhard, C. Vogt, and P. Renaud, “Rapid prototyping of small size objects,” Rapid Prototyping J.6(4), 259–266 (2000).
[CrossRef]

1999 (1)

A. Bertsch, H. Lorenz, and P. Renaud, “3D microfabrication by combining microstereolithography and thick resist UV lithography,” Sens. Actuators A73(1–2), 14–23 (1999).

1998 (1)

W. Ehrfeld, “Recent developments in deep x-ray lithography,” J. Vac. Sci. Technol. B16(6), 3526 (1998).
[CrossRef]

1997 (1)

1995 (1)

Babich, I.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Bass, M.

M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
[CrossRef]

Bernhard, P.

A. Bertsch, P. Bernhard, C. Vogt, and P. Renaud, “Rapid prototyping of small size objects,” Rapid Prototyping J.6(4), 259–266 (2000).
[CrossRef]

Bertsch, A.

A. Bertsch, P. Bernhard, C. Vogt, and P. Renaud, “Rapid prototyping of small size objects,” Rapid Prototyping J.6(4), 259–266 (2000).
[CrossRef]

A. Bertsch, H. Lorenz, and P. Renaud, “3D microfabrication by combining microstereolithography and thick resist UV lithography,” Sens. Actuators A73(1–2), 14–23 (1999).

Boilot, J.-P.

M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
[CrossRef]

Brancaccio, J. R.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Brun, A.

M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
[CrossRef]

Bucchignano, J.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Canva, M.

M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
[CrossRef]

Cassagne, F.

M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
[CrossRef]

Chaput, F.

M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
[CrossRef]

Chichkov, B. N.

Chiu, D. T.

H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, “Fabrication of complex three-dimensional microchannel systems in PDMS,” J. Am. Chem. Soc.125(2), 554–559 (2003).
[CrossRef] [PubMed]

Cremer, C.

Cronauer, C.

Di Fabrizio, E.

F. Romanato, R. Kumar, and E. Di Fabrizio, “Interface lithography: a hybrid lithographic approach for the fabrication of patterns embedded in three-dimensional structures,” Nanotechnology16(1), 40–46 (2005).
[CrossRef]

Domann, G.

Doyle, J. P.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Egbert, A.

Eggeling, C.

C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” ChemPhysChem6(5), 791–804 (2005).
[CrossRef] [PubMed]

Ehrfeld, W.

W. Ehrfeld, “Recent developments in deep x-ray lithography,” J. Vac. Sci. Technol. B16(6), 3526 (1998).
[CrossRef]

Farsari, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533, 1–31 (2013).

Fischer, A.

Fried, D. M.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Fröhlich, L.

Ghodssi, R.

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng.13(2), 170–177 (2003).
[CrossRef]

Guo, L. J.

L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
[CrossRef]

Heerdt, C.

M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
[CrossRef]

Hergenrother, J. M.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Houbertz, R.

Jeon, B. G.

Jung, B. J.

Juodkazis, S.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533, 1–31 (2013).

Kawata, S.

Kettlitz, S. W.

S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip12(1), 197–203 (2012).
[CrossRef] [PubMed]

Kim, R. H.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
[CrossRef]

Kleiner, T.

Kong, H. J.

Kumar, R.

F. Romanato, R. Kumar, and E. Di Fabrizio, “Interface lithography: a hybrid lithographic approach for the fabrication of patterns embedded in three-dimensional structures,” Nanotechnology16(1), 40–46 (2005).
[CrossRef]

Lee, K.-S.

B. J. Jung, H. J. Kong, B. G. Jeon, D.-Y. Yang, Y. Son, and K.-S. Lee, “Autofocusing method using fluorescence detection for precise two-photon nanofabrication,” Opt. Express19(23), 22659–22668 (2011).
[CrossRef] [PubMed]

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
[CrossRef]

Lemmer, U.

S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip12(1), 197–203 (2012).
[CrossRef] [PubMed]

T. Woggon, T. Kleiner, M. Punke, and U. Lemmer, “Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization,” Opt. Express17(4), 2500–2507 (2009).
[CrossRef] [PubMed]

Lévy, Y.

M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
[CrossRef]

Lorenz, H.

A. Bertsch, H. Lorenz, and P. Renaud, “3D microfabrication by combining microstereolithography and thick resist UV lithography,” Sens. Actuators A73(1–2), 14–23 (1999).

Malinauskas, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533, 1–31 (2013).

Maruo, S.

McNab, S. J.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Modafe, A.

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng.13(2), 170–177 (2003).
[CrossRef]

Nakamura, O.

Navakant, B.

O. P. Parida and B. Navakant, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Int. Conf. on Opt. and Photon.(CSIO) (2009), pp. 4–7.

Neumeister, A.

A. Neumeister, “Properties of three-dimensional precision objects fabricated by using laser based micro stereo lithography,” J. Laser Micro. Nanoeng.3(2), 67–72 (2008).
[CrossRef]

Nunes, R.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Odom, T. W.

H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, “Fabrication of complex three-dimensional microchannel systems in PDMS,” J. Am. Chem. Soc.125(2), 554–559 (2003).
[CrossRef] [PubMed]

Ostendorf, A.

Parida, O. P.

O. P. Parida and B. Navakant, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Int. Conf. on Opt. and Photon.(CSIO) (2009), pp. 4–7.

Park, S. H.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
[CrossRef]

Patel, J.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533, 1–31 (2013).

Popall, M.

Punke, M.

Purushothaman, S.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Rapaport, A.

M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
[CrossRef]

Renaud, P.

A. Bertsch, P. Bernhard, C. Vogt, and P. Renaud, “Rapid prototyping of small size objects,” Rapid Prototyping J.6(4), 259–266 (2000).
[CrossRef]

A. Bertsch, H. Lorenz, and P. Renaud, “3D microfabrication by combining microstereolithography and thick resist UV lithography,” Sens. Actuators A73(1–2), 14–23 (1999).

Roger, G.

M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
[CrossRef]

Romanato, F.

F. Romanato, R. Kumar, and E. Di Fabrizio, “Interface lithography: a hybrid lithographic approach for the fabrication of patterns embedded in three-dimensional structures,” Nanotechnology16(1), 40–46 (2005).
[CrossRef]

Rooks, M.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Rothwell, M. B.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Schulz, J.

Seidel, C. A. M.

C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” ChemPhysChem6(5), 791–804 (2005).
[CrossRef] [PubMed]

Sekaric, L.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Serbin, J.

Sittel, W.

S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip12(1), 197–203 (2012).
[CrossRef] [PubMed]

Son, Y.

Steen, S.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Stelzer, E. H.

Terada, N.

H. Yamada, Y. Yoshida, and N. Terada, “Blood cell counter in gravity-driven microchannel,” Jpn. J. Appl. Phys.44(12), 8739–8741 (2005).
[CrossRef]

Topol, A. W.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Valouch, S.

S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip12(1), 197–203 (2012).
[CrossRef] [PubMed]

Viswanathan, R. G.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Vogt, C.

A. Bertsch, P. Bernhard, C. Vogt, and P. Renaud, “Rapid prototyping of small size objects,” Rapid Prototyping J.6(4), 259–266 (2000).
[CrossRef]

Volkmer, A.

C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” ChemPhysChem6(5), 791–804 (2005).
[CrossRef] [PubMed]

Waits, C. M.

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng.13(2), 170–177 (2003).
[CrossRef]

Whitesides, G. M.

H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, “Fabrication of complex three-dimensional microchannel systems in PDMS,” J. Am. Chem. Soc.125(2), 554–559 (2003).
[CrossRef] [PubMed]

Woggon, T.

Wu, H.

H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, “Fabrication of complex three-dimensional microchannel systems in PDMS,” J. Am. Chem. Soc.125(2), 554–559 (2003).
[CrossRef] [PubMed]

Yamada, H.

H. Yamada, Y. Yoshida, and N. Terada, “Blood cell counter in gravity-driven microchannel,” Jpn. J. Appl. Phys.44(12), 8739–8741 (2005).
[CrossRef]

Yang, D.-Y.

B. J. Jung, H. J. Kong, B. G. Jeon, D.-Y. Yang, Y. Son, and K.-S. Lee, “Autofocusing method using fluorescence detection for precise two-photon nanofabrication,” Opt. Express19(23), 22659–22668 (2011).
[CrossRef] [PubMed]

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
[CrossRef]

Yoshida, Y.

H. Yamada, Y. Yoshida, and N. Terada, “Blood cell counter in gravity-driven microchannel,” Jpn. J. Appl. Phys.44(12), 8739–8741 (2005).
[CrossRef]

Yu, R.

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Adv. Mater. (1)

L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
[CrossRef]

Appl. Opt. (1)

ChemPhysChem (1)

C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” ChemPhysChem6(5), 791–804 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, “Fabrication of complex three-dimensional microchannel systems in PDMS,” J. Am. Chem. Soc.125(2), 554–559 (2003).
[CrossRef] [PubMed]

J. Laser Micro. Nanoeng. (1)

A. Neumeister, “Properties of three-dimensional precision objects fabricated by using laser based micro stereo lithography,” J. Laser Micro. Nanoeng.3(2), 67–72 (2008).
[CrossRef]

J. Micromech. Microeng. (1)

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng.13(2), 170–177 (2003).
[CrossRef]

J. Vac. Sci. Technol. B (1)

W. Ehrfeld, “Recent developments in deep x-ray lithography,” J. Vac. Sci. Technol. B16(6), 3526 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Yamada, Y. Yoshida, and N. Terada, “Blood cell counter in gravity-driven microchannel,” Jpn. J. Appl. Phys.44(12), 8739–8741 (2005).
[CrossRef]

Lab Chip (1)

S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip12(1), 197–203 (2012).
[CrossRef] [PubMed]

Microelectron. Eng. (1)

S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006).
[CrossRef]

Nanotechnology (1)

F. Romanato, R. Kumar, and E. Di Fabrizio, “Interface lithography: a hybrid lithographic approach for the fabrication of patterns embedded in three-dimensional structures,” Nanotechnology16(1), 40–46 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002).
[CrossRef]

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533, 1–31 (2013).

Prog. Polym. Sci. (1)

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
[CrossRef]

Rapid Prototyping J. (1)

A. Bertsch, P. Bernhard, C. Vogt, and P. Renaud, “Rapid prototyping of small size objects,” Rapid Prototyping J.6(4), 259–266 (2000).
[CrossRef]

Sens. Actuators A (1)

A. Bertsch, H. Lorenz, and P. Renaud, “3D microfabrication by combining microstereolithography and thick resist UV lithography,” Sens. Actuators A73(1–2), 14–23 (1999).

Other (4)

A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: A new approach to micromachining,” Photonics Spectra (2006).

O. P. Parida and B. Navakant, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Int. Conf. on Opt. and Photon.(CSIO) (2009), pp. 4–7.

S. Inoué and K. R. Spring, Video Microscopy: The Fundamentals (Plenum, 1997), p. 741.

M. J. Madou, Manufacturing Techniques for Microfabrication and Nanotechnology (CRC, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fabrication process of the hybrid lithography. (a) Glass cover slip spin coated with rhodamine 6G doped SU-8. (b) Microstructures definition by UV-lithography. (c) Developed 2D microstructures. (d) After coating with SU-8 2050, the 3D structures are written by 2PP. (e) Final 3D microstructure with 2PP-DLW structures shown in light red.

Fig. 2
Fig. 2

(a) Comparison of exposed and unexposed spectra of SU-8. (b) Emission spectra of rhodamine 6G doped SU-8. (c) Axial intensity signal at the SU-8 rhodamine 6G interface (d) lateral intensity signal at the interface from the doped to the undoped SU-8 across the sloped sidewall. The insets depict the scanning of the voxel across the doped SU-8 interface.

Fig. 3
Fig. 3

Test structures for lateral and vertical alignment of 3D microstructures. (a) Logo attached at the sidewall of a UV-exposed structure (scale bar: 20 µm). (b) The logo written on top of a previously exposed structure (scale bar: 10 µm). (c) Grating written on top of a doped structure the grating period is 750nm (scale bar: 10 µm)

Fig. 4
Fig. 4

(a) Optical micrograph of the microfluidic channel made out of rhodamine 6G doped SU-8 (scale bar: 200 µm) channel. (b) SEM image of the master including a 2PP-DLW written TIR-mirror in a distance of 35µm to the channel and a footprint of 50 µm by 250 µm and a height of 50 µm (scale bar: 250 µm).

Fig. 5
Fig. 5

(a) Schematic drawing of the channel (green) for two particles on top of each other with different z-positions. The red lines indicate the direct and reflected beampath of the particles. (b) The microscope image corresponds to the top view of the schematic drawing (scale bar 100 µm). (c) Velocity profile of fluorescent particles moving along the fluidic channel 6 µm above the bottom of the channel. The red line is a second order polynomial fit.

Metrics