Abstract

Optical rotation is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC) at a telecommunication wavelength. We design a rotationally-stacked woodpile PhC structure, where neighboring layers are rotated by 45° and four layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. The linearly polarized light incident on the structure undergoes optical rotation during transmission. The obtained results show good agreement with numerical simulations. The measurement demonstrates the largest optical rotation angle as large as ∼ 23° at 1.3 μm wavelength for a single helical unit.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
    [CrossRef] [PubMed]
  2. M. Kuwata-Gonikami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. P. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
    [CrossRef]
  3. K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express15, 9575–9583 (2007).
    [CrossRef] [PubMed]
  4. K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planer chiral photonic crystals,” Opt. Express16, 7189–7196 (2008).
    [CrossRef] [PubMed]
  5. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4, 676–685 (2010).
    [CrossRef]
  6. M. Thiel, G. von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystal,” Opt. Lett.32, 2547–2549 (2007).
    [CrossRef] [PubMed]
  7. M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics7, 801–805 (2013).
    [CrossRef]
  8. K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature384, 616 (1996).
    [CrossRef]
  9. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
    [CrossRef]
  10. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
    [CrossRef] [PubMed]
  11. K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
    [CrossRef] [PubMed]
  12. W. B. Gao, P. Fallahi, E. Togan, J. M. Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature491, 426–429 (2012).
    [CrossRef] [PubMed]
  13. T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013).
    [CrossRef] [PubMed]
  14. H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature457, 702–705 (2009).
    [CrossRef] [PubMed]
  15. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett.2, 59–62 (2002).
    [CrossRef]
  16. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2, 117–121 (2003).
    [CrossRef] [PubMed]
  17. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2, 688–692 (2008).
    [CrossRef]
  18. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2010).
    [CrossRef]
  19. X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, P. St, and J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett.110, 143903 (2013).
    [CrossRef]
  20. Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (John Wiley, 2000).

2013 (3)

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics7, 801–805 (2013).
[CrossRef]

T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013).
[CrossRef] [PubMed]

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, P. St, and J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett.110, 143903 (2013).
[CrossRef]

2012 (3)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

W. B. Gao, P. Fallahi, E. Togan, J. M. Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature491, 426–429 (2012).
[CrossRef] [PubMed]

2011 (1)

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

2010 (2)

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2010).
[CrossRef]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4, 676–685 (2010).
[CrossRef]

2009 (1)

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature457, 702–705 (2009).
[CrossRef] [PubMed]

2008 (2)

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planer chiral photonic crystals,” Opt. Express16, 7189–7196 (2008).
[CrossRef] [PubMed]

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2, 688–692 (2008).
[CrossRef]

2007 (3)

2005 (1)

M. Kuwata-Gonikami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. P. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef]

2003 (1)

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2, 117–121 (2003).
[CrossRef] [PubMed]

2002 (1)

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett.2, 59–62 (2002).
[CrossRef]

1996 (1)

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature384, 616 (1996).
[CrossRef]

Abe, E.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Allison, G.

T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013).
[CrossRef] [PubMed]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Aoki, K.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2, 688–692 (2008).
[CrossRef]

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2, 117–121 (2003).
[CrossRef] [PubMed]

Aoyagi, Y.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2, 117–121 (2003).
[CrossRef] [PubMed]

Arakawa, Y.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2010).
[CrossRef]

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2, 688–692 (2008).
[CrossRef]

Baba, T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2, 117–121 (2003).
[CrossRef] [PubMed]

Bai, B.

Barnett, S. M.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, P. St, and J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett.110, 143903 (2013).
[CrossRef]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Biancalana, F.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, P. St, and J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett.110, 143903 (2013).
[CrossRef]

Brett, M. J.

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett.2, 59–62 (2002).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature384, 616 (1996).
[CrossRef]

Chen, Y.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4, 676–685 (2010).
[CrossRef]

Cumming, B. P.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics7, 801–805 (2013).
[CrossRef]

Edamatsu, K.

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature457, 702–705 (2009).
[CrossRef] [PubMed]

Fallahi, P.

W. B. Gao, P. Fallahi, E. Togan, J. M. Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature491, 426–429 (2012).
[CrossRef] [PubMed]

Fedotov, V. A.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Fejer, M. M.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Forchel, A.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Fujita, T.

T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013).
[CrossRef] [PubMed]

Gao, W. B.

W. B. Gao, P. Fallahi, E. Togan, J. M. Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature491, 426–429 (2012).
[CrossRef] [PubMed]

Greve, K. D.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Gu, M.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics7, 801–805 (2013).
[CrossRef]

Guimard, D.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2010).
[CrossRef]

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2, 688–692 (2008).
[CrossRef]

Hadfield, R. H.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Hirayama, H.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2, 117–121 (2003).
[CrossRef] [PubMed]

Hofling, S.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Imamoglu, A.

W. B. Gao, P. Fallahi, E. Togan, J. M. Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature491, 426–429 (2012).
[CrossRef] [PubMed]

Imamura, H.

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature457, 702–705 (2009).
[CrossRef] [PubMed]

Inagaki, T.

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature457, 702–705 (2009).
[CrossRef] [PubMed]

Ino, Y.

M. Kuwata-Gonikami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. P. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef]

Inoshita, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2, 117–121 (2003).
[CrossRef] [PubMed]

Ishida, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2010).
[CrossRef]

Iwamoto, S.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2010).
[CrossRef]

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2, 688–692 (2008).
[CrossRef]

Jefimovs, K.

M. Kuwata-Gonikami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. P. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef]

John, S.

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett.2, 59–62 (2002).
[CrossRef]

Kamp, M.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Karvinen, P.

Kauranen, M.

M. Kuwata-Gonikami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. P. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef]

Kennedy, S. R.

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett.2, 59–62 (2002).
[CrossRef]

Kim, N. Y.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Kiyama, H.

T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013).
[CrossRef] [PubMed]

Konishi, K.

Kosaka, H.

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature457, 702–705 (2009).
[CrossRef] [PubMed]

Kumagai, N.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

Kuwata-Gonikami, M.

M. Kuwata-Gonikami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. P. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef]

Kuwata-Gonokami, M.

Lakhtakia, A.

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature384, 616 (1996).
[CrossRef]

Ludwig, A.

T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013).
[CrossRef] [PubMed]

Maier, S.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

McMahon, P. L.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Meng, X.

Mitsumori, Y.

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature457, 702–705 (2009).
[CrossRef] [PubMed]

Miyazaki, H. T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2, 117–121 (2003).
[CrossRef] [PubMed]

Morimoto, K.

T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013).
[CrossRef] [PubMed]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4, 676–685 (2010).
[CrossRef]

Natarajan, C. M.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Nishioka, M.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2, 688–692 (2008).
[CrossRef]

Nomura, M.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2010).
[CrossRef]

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2, 688–692 (2008).
[CrossRef]

Oiwa, A.

T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013).
[CrossRef] [PubMed]

Padgett, M. J.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, P. St, and J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett.110, 143903 (2013).
[CrossRef]

Pelc, J. S.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Plum, E.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Rikitake, Y.

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature457, 702–705 (2009).
[CrossRef] [PubMed]

Robbie, K.

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature384, 616 (1996).
[CrossRef]

Russell, J.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, P. St, and J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett.110, 143903 (2013).
[CrossRef]

Saba, M.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics7, 801–805 (2013).
[CrossRef]

Saito, N.

M. Kuwata-Gonikami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. P. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef]

Sakoda, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2, 117–121 (2003).
[CrossRef] [PubMed]

Sanchez, J. M.

W. B. Gao, P. Fallahi, E. Togan, J. M. Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature491, 426–429 (2012).
[CrossRef] [PubMed]

Schneider, C.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Schröder-Turk, G. E.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics7, 801–805 (2013).
[CrossRef]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Shinya, N.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2, 117–121 (2003).
[CrossRef] [PubMed]

St, P.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, P. St, and J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett.110, 143903 (2013).
[CrossRef]

Sugimoto, T.

Svirko, Y.

Svirko, Y. P.

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planer chiral photonic crystals,” Opt. Express16, 7189–7196 (2008).
[CrossRef] [PubMed]

M. Kuwata-Gonikami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. P. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef]

Svirko, Yu. P.

Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (John Wiley, 2000).

Tandaechanurat, A.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2010).
[CrossRef]

Tarucha, S.

T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013).
[CrossRef] [PubMed]

Teraoka, S.

T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013).
[CrossRef] [PubMed]

Thiel, M.

Toader, O.

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett.2, 59–62 (2002).
[CrossRef]

Togan, E.

W. B. Gao, P. Fallahi, E. Togan, J. M. Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature491, 426–429 (2012).
[CrossRef] [PubMed]

Turner, M. D.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics7, 801–805 (2013).
[CrossRef]

Turunen, J.

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planer chiral photonic crystals,” Opt. Express16, 7189–7196 (2008).
[CrossRef] [PubMed]

M. Kuwata-Gonikami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. P. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef]

Vallius, T.

M. Kuwata-Gonikami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. P. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef]

von Freymann, G.

Wegener, M.

Weiss, T.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, P. St, and J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett.110, 143903 (2013).
[CrossRef]

Wieck, A. D.

T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013).
[CrossRef] [PubMed]

Wong, G. K. L.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, P. St, and J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett.110, 143903 (2013).
[CrossRef]

Xi, X. M.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, P. St, and J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett.110, 143903 (2013).
[CrossRef]

Yamamoto, Y.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Yu, L.

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Zhang, Q.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics7, 801–805 (2013).
[CrossRef]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (John Wiley, 2000).

Appl. Phys. Lett. (1)

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Nano Lett. (1)

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett.2, 59–62 (2002).
[CrossRef]

Nat. Commun. (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2, 117–121 (2003).
[CrossRef] [PubMed]

Nat. Photonics (4)

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2, 688–692 (2008).
[CrossRef]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2010).
[CrossRef]

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics7, 801–805 (2013).
[CrossRef]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4, 676–685 (2010).
[CrossRef]

Nature (4)

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature457, 702–705 (2009).
[CrossRef] [PubMed]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature384, 616 (1996).
[CrossRef]

K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

W. B. Gao, P. Fallahi, E. Togan, J. M. Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature491, 426–429 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (4)

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

M. Kuwata-Gonikami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. P. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef]

T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013).
[CrossRef] [PubMed]

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, P. St, and J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett.110, 143903 (2013).
[CrossRef]

Other (1)

Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (John Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A schematic illustration of the rotationally-stacked woodpile structure. The top (ninth) layer is removed and a part of the structure is cut for clarity. An impulse is irradiated normally to the structure. Yellow arrows indicate the direction of the incident and transmitted light. Blue linear and red circular arrows denote the polarization states of the incident and transmitted light, respectively. (b) A schematic expression of polarization states (Blue: linearly polarized incident light, red: elliptically polarized transmitted light). θ and ϕ are the polarization rotation angle and ellipticity.

Fig. 2
Fig. 2

Calculated dispersion of the polarization rotation angle θ (a) and the ellipticity ϕ (b). Inset in (a) plots −θ + α as a function of α at λ = 1.0 and 1.3 μm. (c) The dispersion of the genuine optical rotation angle χ and the genuine ellipticity ξ obtained by fitting the numerical data in (a) and (b) with the equation in the main text. In the shaded wavelength region 1.2 μm < λ < 2μm, clear optical rotation is observed with finite χ and small ξ.

Fig. 3
Fig. 3

(a) Scanning electron micrograph (SEM) image of the fabricated structure. Nine plates are stacked using three posts as a guide. (b) SEM image zoomed on the periodic rods. The crossing points are aligned by adopting a different rod spacing in the first (third) and second (fourth) layers as described in the main text.

Fig. 4
Fig. 4

(a) Experimentally obtained dispersion of θ for various azimuthal angles α of the incident LP. (b) Transmittance for all measured points in (a). (c) Numerically obtained dispersion of θ for various α. The plots are same as those in Fig. 2(a) around λ = 1.5 μm. The experimental data shows qualitative agreement with the calculated result. (d) Plot of θ as a function of α at λ = 1.62 μm. A double sinusoidal fitting is performed as mentioned in the main text. (e) Dispersion of χ and χback with simulated curve. The experimental data of χ for the forward illumination (black dots) which obtained by the fitting for (a) shows qualitative agreement with the calculation (black line) as well as χback (red dots) obtained by the backward illumination.

Fig. 5
Fig. 5

(a) Plot of ϕ as a function of the wavelength obtained by the experiment. (b) Numerically obtained dispersion of ϕ for various azimuthal angle α. The plots are the same as those in Fig. 2(b), around λ = 1.5 μm. The experimental data shows good agreement with the calculation results. (c) Dispersion of ξ and ξback with a simulated curve. The experimental results are analyzed and fitted with the equation in the main text. All three plots are consistent each other and show ξ ∼ 0° throughout the wavelength range.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ = χ + n = 1 A n sin ( 2 n α α n ) .
θ = χ + A 1 sin ( 2 α α 1 ) + A 2 sin ( 4 α α 2 ) .
θ = χ + 1 2 arctan 2 p sin 2 α ( 1 q ) sin 4 α 1 + q + 2 p cos 2 α + ( 1 q ) cos 4 α .
p = t x 2 t y 2 t x 2 + t y 2 , q = 4 t x t y cos δ t x 2 + t y 2 .

Metrics