Abstract

In the first part of this article we experimentally show that contrast between the very thin layers of La and B enables close to theoretical reflectance. The reflectivity at 6.8 nm wavelength was measured from La/B multilayer mirrors with period thicknesses ranging from 3.5 to 7.2 nm at the appropriate angle for constructive interference. The difference between the measured reflectance and the reflectance calculated for a perfect multilayer structure decreases with increasing multilayer period. The reflectance of the multilayer with the largest period approaches the theoretical value, showing that the optical contrast between the very thin layers of these structures allows to experimentally access close to theoretical reflectance. In the second part of the article we discuss the structure of La/B and LaN/B multilayers. This set of multilayers is probed by hard X-rays (λ = 0.154 nm) and EUV radiation (λ = 6.8 nm). The structure is reconstructed based on a simultaneous fit of the grazing incidence hard X-ray reflectivity and the EUV reflectivity curves. The reflectivity analysis of the La/B and LaN/B multilayer mirrors shows that the lower reflectance of La/B mirrors compared to LaN/B mirrors can be explained by the presence of 5% of La atoms in the B layer and 63% of B in La layer. After multi-parametrical optimization of the LaN/B system, including the nitridation of La, the highest near normal incidence reflectivity of 57.3% at 6.6 nm wavelength has been measured from a multilayer mirror, containing 175 bi-layers. This is the highest value reported so far.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Experimental comparison of extreme-ultraviolet multilayers for solar physics

David L. Windt, Soizik Donguy, John Seely, and Benjawan Kjornrattanawanich
Appl. Opt. 43(9) 1835-1848 (2004)

Study of normal incidence of three-component multilayer mirrors in the range 20–40 nm

Julien Gautier, Franck Delmotte, Marc Roulliay, Françoise Bridou, Marie-Françoise Ravet, and Arnaud Jérome
Appl. Opt. 44(3) 384-390 (2005)

Thermal stability of Mg/Co multilayer with B4C, Mo or Zr diffusion barrier layers

Jingtao Zhu, Sika Zhou, Haochuan Li, Zhanshan Wang, Philippe Jonnard, Karine Le Guen, Min-Hui Hu, Jean-Michel André, Hongjun Zhou, and Tonglin Huo
Opt. Express 19(22) 21849-21854 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. Y. Platonov, L. Gomez, and D. Broadway, “Status of small d-spacing x-ray multilayers development at Osmic,” Proc. SPIE 4782, 152 (2002).
  2. T. Tsarfati, E. Zoethout, R. W. E. van de Kruijs, and F. Bijkerk, “Nitridation and contrast of B4C/La interfaces and multilayers,” Thin Solid Films 518(24), 7249–7252 (2010).
    [Crossref]
  3. S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
    [Crossref]
  4. I. A. Makhotkin, E. Zoethout, E. Louis, A. M. Yakunin, S. Müllender, and F. Bijkerk, “Spectral properties of La/B--based multilayer mirrors near the boron K absorption edge,” Opt. Express 20(11), 11778–11786 (2012).
    [Crossref] [PubMed]
  5. T. Tsarfati, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Reflective multilayer optics for 6.7 nm wavelength radiation sources and next generation lithography,” Thin Solid Films 518(5), 1365–1368 (2009).
    [Crossref]
  6. M. Barthelmess and S. Bajt, “Thermal and stress studies of normal incidence Mo/B4C multilayers for a 6.7 nm wavelength,” Appl. Opt. 50(11), 1610–1619 (2011).
    [Crossref] [PubMed]
  7. C. Michaelsen, J. Wiesmann, R. Bormann, C. Nowak, C. Dieker, S. Hollensteiner, and W. Jäger, “Multilayer mirror for x rays below 190 eV,” Opt. Lett. 26(11), 792–794 (2001).
    [Crossref] [PubMed]
  8. J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom. 34(3), 203–206 (2005).
    [Crossref]
  9. V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron Carbide: Structure, Properties, and Stability under Stress,” J. Am. Ceram. Soc. 94(11), 3605–3628 (2011).
    [Crossref]
  10. V. I. Gushenets, A. Hershcovitch, T. V. Kulevoy, E. M. Oks, K. P. Savkin, A. V. Vizir, and G. Y. Yushkov, “Boron ion source based on planar magnetron discharge in self-sputtering mode,” Rev. Sci. Instrum. 81(2), 02B303 (2010).
    [Crossref] [PubMed]
  11. D. L. Windt, “IMD - Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
    [Crossref]
  12. M. Fernández-Perea, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, M. Vidal-Dasilva, E. Gullikson, A. Aquila, R. Soufli, and J. L. G. Fierro, “Optical constants of electron-beam evaporated boron films in the 6.8-900 eV photon energy range,” J. Opt. Soc. Am. A 24(12), 3800–3807 (2007).
    [Crossref] [PubMed]
  13. R. Soufli, A. L. Aquila, F. Salmassi, M. Fernández-Perea, and E. M. Gullikson, “Optical constants of magnetron-sputtered boron carbide thin films from photoabsorption data in the range 30 to 770 eV,” Appl. Opt. 47(25), 4633–4639 (2008).
    [Crossref] [PubMed]
  14. S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).
  15. E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
    [Crossref]
  16. F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagne, and G. Ulm, “Status of EUV reflectometry at PTB,” Proc. SPIE 5751, 749–758 (2005).
    [Crossref]
  17. A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
  18. W. H. Press, Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University, 2007).
  19. M. Born and E. Wolf, Principles of Optics, Seventh ed. (Cambridge University, 2000).
  20. I. A. Makhotkin, “Structural and reflective characteristics of mutlilayers for 6.x nm wavelength,” (University of Twente, Enschede, 2013).
  21. J. F. Seely, Y. A. Uspenskii, B. Kjornrattanawanich, and D. L. Windt, “Coated photodiode technique for the determination of the optical constants of reactive elements: La and Tb,” Proc. SPIE 6317, 63170T (2006).
    [Crossref]

2012 (1)

2011 (3)

M. Barthelmess and S. Bajt, “Thermal and stress studies of normal incidence Mo/B4C multilayers for a 6.7 nm wavelength,” Appl. Opt. 50(11), 1610–1619 (2011).
[Crossref] [PubMed]

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron Carbide: Structure, Properties, and Stability under Stress,” J. Am. Ceram. Soc. 94(11), 3605–3628 (2011).
[Crossref]

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
[Crossref]

2010 (3)

V. I. Gushenets, A. Hershcovitch, T. V. Kulevoy, E. M. Oks, K. P. Savkin, A. V. Vizir, and G. Y. Yushkov, “Boron ion source based on planar magnetron discharge in self-sputtering mode,” Rev. Sci. Instrum. 81(2), 02B303 (2010).
[Crossref] [PubMed]

T. Tsarfati, E. Zoethout, R. W. E. van de Kruijs, and F. Bijkerk, “Nitridation and contrast of B4C/La interfaces and multilayers,” Thin Solid Films 518(24), 7249–7252 (2010).
[Crossref]

S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
[Crossref]

2009 (2)

S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).

T. Tsarfati, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Reflective multilayer optics for 6.7 nm wavelength radiation sources and next generation lithography,” Thin Solid Films 518(5), 1365–1368 (2009).
[Crossref]

2008 (1)

2007 (2)

M. Fernández-Perea, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, M. Vidal-Dasilva, E. Gullikson, A. Aquila, R. Soufli, and J. L. G. Fierro, “Optical constants of electron-beam evaporated boron films in the 6.8-900 eV photon energy range,” J. Opt. Soc. Am. A 24(12), 3800–3807 (2007).
[Crossref] [PubMed]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).

2006 (1)

J. F. Seely, Y. A. Uspenskii, B. Kjornrattanawanich, and D. L. Windt, “Coated photodiode technique for the determination of the optical constants of reactive elements: La and Tb,” Proc. SPIE 6317, 63170T (2006).
[Crossref]

2005 (2)

F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagne, and G. Ulm, “Status of EUV reflectometry at PTB,” Proc. SPIE 5751, 749–758 (2005).
[Crossref]

J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom. 34(3), 203–206 (2005).
[Crossref]

2002 (1)

Y. Y. Platonov, L. Gomez, and D. Broadway, “Status of small d-spacing x-ray multilayers development at Osmic,” Proc. SPIE 4782, 152 (2002).

2001 (1)

1998 (1)

D. L. Windt, “IMD - Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[Crossref]

André, J. M.

J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom. 34(3), 203–206 (2005).
[Crossref]

Andreev, S.

S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
[Crossref]

Andreev, S. S.

S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).

Aquila, A.

Aquila, A. L.

Aznárez, J. A.

Bajt, S.

Barthelmess, M.

Barysheva, M.

S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
[Crossref]

Barysheva, M. M.

S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).

Bijkerk, F.

I. A. Makhotkin, E. Zoethout, E. Louis, A. M. Yakunin, S. Müllender, and F. Bijkerk, “Spectral properties of La/B--based multilayer mirrors near the boron K absorption edge,” Opt. Express 20(11), 11778–11786 (2012).
[Crossref] [PubMed]

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
[Crossref]

T. Tsarfati, E. Zoethout, R. W. E. van de Kruijs, and F. Bijkerk, “Nitridation and contrast of B4C/La interfaces and multilayers,” Thin Solid Films 518(24), 7249–7252 (2010).
[Crossref]

T. Tsarfati, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Reflective multilayer optics for 6.7 nm wavelength radiation sources and next generation lithography,” Thin Solid Films 518(5), 1365–1368 (2009).
[Crossref]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).

Bormann, R.

Bridou, F.

J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom. 34(3), 203–206 (2005).
[Crossref]

Broadway, D.

Y. Y. Platonov, L. Gomez, and D. Broadway, “Status of small d-spacing x-ray multilayers development at Osmic,” Proc. SPIE 4782, 152 (2002).

Buchholz, C.

F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagne, and G. Ulm, “Status of EUV reflectometry at PTB,” Proc. SPIE 5751, 749–758 (2005).
[Crossref]

Chhowalla, M.

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron Carbide: Structure, Properties, and Stability under Stress,” J. Am. Ceram. Soc. 94(11), 3605–3628 (2011).
[Crossref]

Chkhalo, N.

S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
[Crossref]

Chkhalo, N. I.

S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).

Delmotte, F.

J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom. 34(3), 203–206 (2005).
[Crossref]

Dieker, C.

Domnich, V.

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron Carbide: Structure, Properties, and Stability under Stress,” J. Am. Ceram. Soc. 94(11), 3605–3628 (2011).
[Crossref]

Fernández-Perea, M.

Fierro, J. L. G.

Filatova, E. O.

J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom. 34(3), 203–206 (2005).
[Crossref]

Fischer, A.

F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagne, and G. Ulm, “Status of EUV reflectometry at PTB,” Proc. SPIE 5751, 749–758 (2005).
[Crossref]

Gomez, L.

Y. Y. Platonov, L. Gomez, and D. Broadway, “Status of small d-spacing x-ray multilayers development at Osmic,” Proc. SPIE 4782, 152 (2002).

Gullikson, E.

Gullikson, E. M.

Gusev, S.

S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
[Crossref]

Gusev, S. A.

S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).

Gushenets, V. I.

V. I. Gushenets, A. Hershcovitch, T. V. Kulevoy, E. M. Oks, K. P. Savkin, A. V. Vizir, and G. Y. Yushkov, “Boron ion source based on planar magnetron discharge in self-sputtering mode,” Rev. Sci. Instrum. 81(2), 02B303 (2010).
[Crossref] [PubMed]

Haber, R. A.

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron Carbide: Structure, Properties, and Stability under Stress,” J. Am. Ceram. Soc. 94(11), 3605–3628 (2011).
[Crossref]

Hershcovitch, A.

V. I. Gushenets, A. Hershcovitch, T. V. Kulevoy, E. M. Oks, K. P. Savkin, A. V. Vizir, and G. Y. Yushkov, “Boron ion source based on planar magnetron discharge in self-sputtering mode,” Rev. Sci. Instrum. 81(2), 02B303 (2010).
[Crossref] [PubMed]

Hollensteiner, S.

Jäger, W.

Jerome, A.

J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom. 34(3), 203–206 (2005).
[Crossref]

Jonnard, P.

J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom. 34(3), 203–206 (2005).
[Crossref]

Kjornrattanawanich, B.

J. F. Seely, Y. A. Uspenskii, B. Kjornrattanawanich, and D. L. Windt, “Coated photodiode technique for the determination of the optical constants of reactive elements: La and Tb,” Proc. SPIE 6317, 63170T (2006).
[Crossref]

Kulevoy, T. V.

V. I. Gushenets, A. Hershcovitch, T. V. Kulevoy, E. M. Oks, K. P. Savkin, A. V. Vizir, and G. Y. Yushkov, “Boron ion source based on planar magnetron discharge in self-sputtering mode,” Rev. Sci. Instrum. 81(2), 02B303 (2010).
[Crossref] [PubMed]

Larruquert, J. I.

Laubis, C.

F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagne, and G. Ulm, “Status of EUV reflectometry at PTB,” Proc. SPIE 5751, 749–758 (2005).
[Crossref]

Louis, E.

I. A. Makhotkin, E. Zoethout, E. Louis, A. M. Yakunin, S. Müllender, and F. Bijkerk, “Spectral properties of La/B--based multilayer mirrors near the boron K absorption edge,” Opt. Express 20(11), 11778–11786 (2012).
[Crossref] [PubMed]

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
[Crossref]

T. Tsarfati, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Reflective multilayer optics for 6.7 nm wavelength radiation sources and next generation lithography,” Thin Solid Films 518(5), 1365–1368 (2009).
[Crossref]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).

Makhotkin, I. A.

Méndez, J. A.

Michaelsen, C.

J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom. 34(3), 203–206 (2005).
[Crossref]

C. Michaelsen, J. Wiesmann, R. Bormann, C. Nowak, C. Dieker, S. Hollensteiner, and W. Jäger, “Multilayer mirror for x rays below 190 eV,” Opt. Lett. 26(11), 792–794 (2001).
[Crossref] [PubMed]

Müllender, S.

Nedelcu, I.

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).

Nowak, C.

Oks, E. M.

V. I. Gushenets, A. Hershcovitch, T. V. Kulevoy, E. M. Oks, K. P. Savkin, A. V. Vizir, and G. Y. Yushkov, “Boron ion source based on planar magnetron discharge in self-sputtering mode,” Rev. Sci. Instrum. 81(2), 02B303 (2010).
[Crossref] [PubMed]

Pestov, A.

S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
[Crossref]

Pestov, A. E.

S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).

Platonov, Y. Y.

Y. Y. Platonov, L. Gomez, and D. Broadway, “Status of small d-spacing x-ray multilayers development at Osmic,” Proc. SPIE 4782, 152 (2002).

Ploeger, S.

F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagne, and G. Ulm, “Status of EUV reflectometry at PTB,” Proc. SPIE 5751, 749–758 (2005).
[Crossref]

Polkovnikov, V.

S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
[Crossref]

Polkovnikov, V. N.

S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).

Ravet, M. F.

J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom. 34(3), 203–206 (2005).
[Crossref]

Reynaud, S.

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron Carbide: Structure, Properties, and Stability under Stress,” J. Am. Ceram. Soc. 94(11), 3605–3628 (2011).
[Crossref]

Rogachev, D.

S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
[Crossref]

Salashchenko, N.

S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
[Crossref]

Salashchenko, N. N.

S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).

Salmassi, F.

Savkin, K. P.

V. I. Gushenets, A. Hershcovitch, T. V. Kulevoy, E. M. Oks, K. P. Savkin, A. V. Vizir, and G. Y. Yushkov, “Boron ion source based on planar magnetron discharge in self-sputtering mode,” Rev. Sci. Instrum. 81(2), 02B303 (2010).
[Crossref] [PubMed]

Scholz, F.

F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagne, and G. Ulm, “Status of EUV reflectometry at PTB,” Proc. SPIE 5751, 749–758 (2005).
[Crossref]

Scholze, F.

F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagne, and G. Ulm, “Status of EUV reflectometry at PTB,” Proc. SPIE 5751, 749–758 (2005).
[Crossref]

Seely, J. F.

J. F. Seely, Y. A. Uspenskii, B. Kjornrattanawanich, and D. L. Windt, “Coated photodiode technique for the determination of the optical constants of reactive elements: La and Tb,” Proc. SPIE 6317, 63170T (2006).
[Crossref]

Shmaenok, L. A.

S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).

Soufli, R.

Tsarfati, T.

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
[Crossref]

T. Tsarfati, E. Zoethout, R. W. E. van de Kruijs, and F. Bijkerk, “Nitridation and contrast of B4C/La interfaces and multilayers,” Thin Solid Films 518(24), 7249–7252 (2010).
[Crossref]

T. Tsarfati, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Reflective multilayer optics for 6.7 nm wavelength radiation sources and next generation lithography,” Thin Solid Films 518(5), 1365–1368 (2009).
[Crossref]

Ulm, G.

F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagne, and G. Ulm, “Status of EUV reflectometry at PTB,” Proc. SPIE 5751, 749–758 (2005).
[Crossref]

Uspenskii, Y. A.

J. F. Seely, Y. A. Uspenskii, B. Kjornrattanawanich, and D. L. Windt, “Coated photodiode technique for the determination of the optical constants of reactive elements: La and Tb,” Proc. SPIE 6317, 63170T (2006).
[Crossref]

Vainer, Y.

S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
[Crossref]

Vainer, Y. A.

S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).

van de Kruijs, R. W. E.

T. Tsarfati, E. Zoethout, R. W. E. van de Kruijs, and F. Bijkerk, “Nitridation and contrast of B4C/La interfaces and multilayers,” Thin Solid Films 518(24), 7249–7252 (2010).
[Crossref]

T. Tsarfati, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Reflective multilayer optics for 6.7 nm wavelength radiation sources and next generation lithography,” Thin Solid Films 518(5), 1365–1368 (2009).
[Crossref]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).

Vidal-Dasilva, M.

Vizir, A. V.

V. I. Gushenets, A. Hershcovitch, T. V. Kulevoy, E. M. Oks, K. P. Savkin, A. V. Vizir, and G. Y. Yushkov, “Boron ion source based on planar magnetron discharge in self-sputtering mode,” Rev. Sci. Instrum. 81(2), 02B303 (2010).
[Crossref] [PubMed]

Wagne, H.

F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagne, and G. Ulm, “Status of EUV reflectometry at PTB,” Proc. SPIE 5751, 749–758 (2005).
[Crossref]

Wiesmann, J.

J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom. 34(3), 203–206 (2005).
[Crossref]

C. Michaelsen, J. Wiesmann, R. Bormann, C. Nowak, C. Dieker, S. Hollensteiner, and W. Jäger, “Multilayer mirror for x rays below 190 eV,” Opt. Lett. 26(11), 792–794 (2001).
[Crossref] [PubMed]

Windt, D. L.

J. F. Seely, Y. A. Uspenskii, B. Kjornrattanawanich, and D. L. Windt, “Coated photodiode technique for the determination of the optical constants of reactive elements: La and Tb,” Proc. SPIE 6317, 63170T (2006).
[Crossref]

D. L. Windt, “IMD - Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[Crossref]

Yakshin, A. E.

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
[Crossref]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).

Yakunin, A. M.

Yushkov, G. Y.

V. I. Gushenets, A. Hershcovitch, T. V. Kulevoy, E. M. Oks, K. P. Savkin, A. V. Vizir, and G. Y. Yushkov, “Boron ion source based on planar magnetron discharge in self-sputtering mode,” Rev. Sci. Instrum. 81(2), 02B303 (2010).
[Crossref] [PubMed]

Zoethout, E.

I. A. Makhotkin, E. Zoethout, E. Louis, A. M. Yakunin, S. Müllender, and F. Bijkerk, “Spectral properties of La/B--based multilayer mirrors near the boron K absorption edge,” Opt. Express 20(11), 11778–11786 (2012).
[Crossref] [PubMed]

T. Tsarfati, E. Zoethout, R. W. E. van de Kruijs, and F. Bijkerk, “Nitridation and contrast of B4C/La interfaces and multilayers,” Thin Solid Films 518(24), 7249–7252 (2010).
[Crossref]

T. Tsarfati, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Reflective multilayer optics for 6.7 nm wavelength radiation sources and next generation lithography,” Thin Solid Films 518(5), 1365–1368 (2009).
[Crossref]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).

Zuev, S.

S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
[Crossref]

Zuev, S. Y.

S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).

Appl. Opt. (2)

Comput. Phys. (1)

D. L. Windt, “IMD - Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[Crossref]

J. Am. Ceram. Soc. (1)

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron Carbide: Structure, Properties, and Stability under Stress,” J. Am. Ceram. Soc. 94(11), 3605–3628 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment (1)

S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 603, 80-82 (2009).

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (4)

Y. Y. Platonov, L. Gomez, and D. Broadway, “Status of small d-spacing x-ray multilayers development at Osmic,” Proc. SPIE 4782, 152 (2002).

F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagne, and G. Ulm, “Status of EUV reflectometry at PTB,” Proc. SPIE 5751, 749–758 (2005).
[Crossref]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).

J. F. Seely, Y. A. Uspenskii, B. Kjornrattanawanich, and D. L. Windt, “Coated photodiode technique for the determination of the optical constants of reactive elements: La and Tb,” Proc. SPIE 6317, 63170T (2006).
[Crossref]

Prog. Surf. Sci. (1)

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86(11-12), 255–294 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

V. I. Gushenets, A. Hershcovitch, T. V. Kulevoy, E. M. Oks, K. P. Savkin, A. V. Vizir, and G. Y. Yushkov, “Boron ion source based on planar magnetron discharge in self-sputtering mode,” Rev. Sci. Instrum. 81(2), 02B303 (2010).
[Crossref] [PubMed]

Tech. Phys. (1)

S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys. 55(8), 1168–1174 (2010).
[Crossref]

Thin Solid Films (2)

T. Tsarfati, E. Zoethout, R. W. E. van de Kruijs, and F. Bijkerk, “Nitridation and contrast of B4C/La interfaces and multilayers,” Thin Solid Films 518(24), 7249–7252 (2010).
[Crossref]

T. Tsarfati, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Reflective multilayer optics for 6.7 nm wavelength radiation sources and next generation lithography,” Thin Solid Films 518(5), 1365–1368 (2009).
[Crossref]

XRay Spectrom. (1)

J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom. 34(3), 203–206 (2005).
[Crossref]

Other (3)

W. H. Press, Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University, 2007).

M. Born and E. Wolf, Principles of Optics, Seventh ed. (Cambridge University, 2000).

I. A. Makhotkin, “Structural and reflective characteristics of mutlilayers for 6.x nm wavelength,” (University of Twente, Enschede, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Measured (markers) and simulated (lines) EUV reflectivity for e-beam deposited 40 period La/B multilayers with different periods. Simulations are performed using the parameters indicated in Table 1.

Fig. 2
Fig. 2

The scheme of the model for grazing incidence hard X-ray reflectivity and normal incidence EUV reflectance data fitting.

Fig. 3
Fig. 3

Measured and calculated grazing incidence Cu-Kα1 reflectivity curves for La/B, La/N/B and La(N)/B multilayers.

Fig. 4
Fig. 4

Residuals between Cu-Kα1 measured and calculated data presented in Fig. 3.

Fig. 5
Fig. 5

Measured and calculated normal incidence EUV reflectivity spectra for 50 period La/B, La/N/B and La(N)/B multilayer stacks.

Fig. 6
Fig. 6

Reconstructed optical profile for La/B, La/N/B and La(N)/B multilayer stacks calculated for 6.8 nm wavelength and presented as δ = 1-n where n is the real part of the dielectric permittivity.

Fig. 7
Fig. 7

Normal incidence EUV reflectivity spectra for 175 period La/N/B (A) and La(N)/B (B) multilayer mirrors measured and calculated using models reconstructed for 50 period stacks.

Tables (2)

Tables Icon

Table 1 Summary of Measured and Calculated Reflectance of La/B Multilayer Mirrors with Period Thicknesses from 3.45 to 7.25 nm at Indicated Angles of Incidence

Tables Icon

Table 2 Summary of Structural Parameters for La/B, La/N/B and La(N)/B Multilayer Reconstructed Using Simultaneous Grazing Incidence X-ray Reflectivity and Normal Incidence EUV Reflectivity Fits

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

χ 2 = 1 Ll j=1 l ( I j theory I j exp ) 2 σ exp 2 ,

Metrics