Abstract

We demonstrate theoretically and experimentally, that the non-uniform spectra of second harmonic generation (SHG) from an unapodized step-chirped periodically poled nonlinear optical grating can be apodized utilizing tightly-focused Gaussian beams to suppress the ripple in its wideband response. In our example, by increasing focusing, a ripple-free response is progressively achieved over a 6-dB bandwidth of >5nm, with a beam waist of 20 µm. With this tight focusing arrangement, a continuous tuning of 11-nm is also demonstrated by simply changing the focal point by 5.8 mm within the step-chirped grating based APPLN.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol.24(7), 2579–2592 (2006).
    [CrossRef]
  2. M. Ahlawat, A. Bostani, A. Tehranchi, and R. Kashyap, “Agile multicasting based on cascaded χ(2) nonlinearities in a step-chirped periodically poled lithium niobate,” Opt. Lett.38(15), 2760–2762 (2013).
    [CrossRef] [PubMed]
  3. G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFGDFG in a broadband linear-chirped PPLN waveguide,” Opt. Express18(6), 6064–6070 (2010).
    [CrossRef]
  4. A. Bogoni, X. Wu, I. Fazal, and A. E. Willner, “Photonic processing of 320 Gbits/s based on sum-/difference-frequency generation and pump depletion in a single PPLN waveguide,” Opt. Lett.34(12), 1825–1827 (2009).
    [CrossRef] [PubMed]
  5. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett.24(16), 1157–1159 (1999).
    [CrossRef] [PubMed]
  6. W. Dang, Y. Chen, and X. Chen, “Performance Enhancement for Ultrashort-Pulse Wavelength Conversion by Using an Aperiodic Domain-Inverted Optical Superlattice,” IEEE Photon. Technol. Lett.24(5), 347–349 (2012).
    [CrossRef]
  7. M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D28(9), 1747–1763 (1995).
    [CrossRef]
  8. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett.33(16), 1804–1806 (2008).
    [CrossRef] [PubMed]
  9. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron.26(7), 1265–1276 (1990).
    [CrossRef]
  10. A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron.45(2), 187–194 (2009).
    [CrossRef]
  11. A. Tehranchi and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second-harmonic generation,” J. Lightwave Technol.26(3), 343–349 (2008).
    [CrossRef]
  12. A. Bostani, A. Tehranchi, and R. Kashyap, “Engineering of effective second-order nonlinearity in uniform and chirped gratings,” J. Opt. Soc. Am. B29(10), 2929–2934 (2012).
    [CrossRef]
  13. C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B30(6), 1551–1568 (2013).
    [CrossRef]
  14. S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys.51(1), 50–60 (1980).
    [CrossRef]
  15. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).
    [CrossRef]
  16. D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams,” Phys. Rev.145(1), 338–379 (1966).
    [CrossRef]
  17. S. Feng and H. G. Winful, “Physical origin of the Gouy phase shift,” Opt. Lett.26(8), 485–487 (2001).
    [CrossRef] [PubMed]
  18. H. E. Major, C. B. E. Gawith, and P. G. R. Smith, “Gouy phase compensation in quasiphase matching,” Opt. Commun.281(19), 5036–5040 (2008).
    [CrossRef]
  19. N. Lastzka and R. Schnabel, “The Gouy phase shift in nonlinear interactions of waves,” Opt. Express15(12), 7211–7217 (2007).
    [CrossRef] [PubMed]
  20. R. Shiloh and A. Arie, “Poling pattern for efficient frequency doubling of Gaussian beams,” Appl. Phys. B109(4), 573–579 (2012).
    [CrossRef]
  21. D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev.148(1), 302–312 (1966).
    [CrossRef]
  22. T. Kirk, McDonald, Second-order paraxial Gaussian beam (Joseph Henry Laboratories, Princeton University, 2009).
  23. K. Pandiyan, Y.-S. Kang, H.-H. Lim, B.-J. Kim, O. Prakash, and M.-S. Cha, “Poling quality evaluation of periodically poled lithium niobate using diffraction method,” J. Opt. Soc. Korea12(3), 205–209 (2008).
    [CrossRef]

2013 (2)

2012 (3)

A. Bostani, A. Tehranchi, and R. Kashyap, “Engineering of effective second-order nonlinearity in uniform and chirped gratings,” J. Opt. Soc. Am. B29(10), 2929–2934 (2012).
[CrossRef]

W. Dang, Y. Chen, and X. Chen, “Performance Enhancement for Ultrashort-Pulse Wavelength Conversion by Using an Aperiodic Domain-Inverted Optical Superlattice,” IEEE Photon. Technol. Lett.24(5), 347–349 (2012).
[CrossRef]

R. Shiloh and A. Arie, “Poling pattern for efficient frequency doubling of Gaussian beams,” Appl. Phys. B109(4), 573–579 (2012).
[CrossRef]

2010 (1)

2009 (2)

A. Bogoni, X. Wu, I. Fazal, and A. E. Willner, “Photonic processing of 320 Gbits/s based on sum-/difference-frequency generation and pump depletion in a single PPLN waveguide,” Opt. Lett.34(12), 1825–1827 (2009).
[CrossRef] [PubMed]

A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron.45(2), 187–194 (2009).
[CrossRef]

2008 (4)

2007 (1)

2006 (1)

2001 (1)

1999 (1)

1995 (1)

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D28(9), 1747–1763 (1995).
[CrossRef]

1990 (1)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron.26(7), 1265–1276 (1990).
[CrossRef]

1980 (1)

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys.51(1), 50–60 (1980).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).
[CrossRef]

1966 (2)

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams,” Phys. Rev.145(1), 338–379 (1966).
[CrossRef]

D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev.148(1), 302–312 (1966).
[CrossRef]

Ahlawat, M.

Arie, A.

R. Shiloh and A. Arie, “Poling pattern for efficient frequency doubling of Gaussian beams,” Appl. Phys. B109(4), 573–579 (2012).
[CrossRef]

Ashkin, A.

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams,” Phys. Rev.145(1), 338–379 (1966).
[CrossRef]

Bogoni, A.

Bostani, A.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).
[CrossRef]

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams,” Phys. Rev.145(1), 338–379 (1966).
[CrossRef]

Brener, I.

Cha, M.-S.

Chang, D.

Chen, X.

W. Dang, Y. Chen, and X. Chen, “Performance Enhancement for Ultrashort-Pulse Wavelength Conversion by Using an Aperiodic Domain-Inverted Optical Superlattice,” IEEE Photon. Technol. Lett.24(5), 347–349 (2012).
[CrossRef]

Chen, Y.

W. Dang, Y. Chen, and X. Chen, “Performance Enhancement for Ultrashort-Pulse Wavelength Conversion by Using an Aperiodic Domain-Inverted Optical Superlattice,” IEEE Photon. Technol. Lett.24(5), 347–349 (2012).
[CrossRef]

Chou, M. H.

Dang, W.

W. Dang, Y. Chen, and X. Chen, “Performance Enhancement for Ultrashort-Pulse Wavelength Conversion by Using an Aperiodic Domain-Inverted Optical Superlattice,” IEEE Photon. Technol. Lett.24(5), 347–349 (2012).
[CrossRef]

Falk, J.

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys.51(1), 50–60 (1980).
[CrossRef]

Fazal, I.

Fejer, M. M.

Feng, S.

Furukawa, H.

Gallmann, L.

Gawith, C. B. E.

H. E. Major, C. B. E. Gawith, and P. G. R. Smith, “Gouy phase compensation in quasiphase matching,” Opt. Commun.281(19), 5036–5040 (2008).
[CrossRef]

Guha, S.

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys.51(1), 50–60 (1980).
[CrossRef]

Houe, M.

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D28(9), 1747–1763 (1995).
[CrossRef]

Huang, D.

Ito, H.

Kang, Y.-S.

Kashyap, R.

Kim, B.-J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).
[CrossRef]

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams,” Phys. Rev.145(1), 338–379 (1966).
[CrossRef]

D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev.148(1), 302–312 (1966).
[CrossRef]

Kumar, S.

Langrock, C.

Lastzka, N.

Lim, H.-H.

Lin, Y. W.

Lu, G.-W.

Major, H. E.

H. E. Major, C. B. E. Gawith, and P. G. R. Smith, “Gouy phase compensation in quasiphase matching,” Opt. Commun.281(19), 5036–5040 (2008).
[CrossRef]

McGeehan, J. E.

Miller, R. C.

D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev.148(1), 302–312 (1966).
[CrossRef]

Miyazaki, T.

Nishihara, H.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron.26(7), 1265–1276 (1990).
[CrossRef]

Pandiyan, K.

Parameswaran, K. R.

Phillips, C. R.

Prakash, O.

Schnabel, R.

Shiloh, R.

R. Shiloh and A. Arie, “Poling pattern for efficient frequency doubling of Gaussian beams,” Appl. Phys. B109(4), 573–579 (2012).
[CrossRef]

Shinada, S.

Smith, P. G. R.

H. E. Major, C. B. E. Gawith, and P. G. R. Smith, “Gouy phase compensation in quasiphase matching,” Opt. Commun.281(19), 5036–5040 (2008).
[CrossRef]

Suhara, T.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron.26(7), 1265–1276 (1990).
[CrossRef]

Sun, J.

Tehranchi, A.

Townsend, P. D.

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D28(9), 1747–1763 (1995).
[CrossRef]

Wada, N.

Wang, J.

Willner, A. E.

Winful, H. G.

Wu, X.

Zhang, X.

Appl. Phys. B (1)

R. Shiloh and A. Arie, “Poling pattern for efficient frequency doubling of Gaussian beams,” Appl. Phys. B109(4), 573–579 (2012).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron.26(7), 1265–1276 (1990).
[CrossRef]

A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron.45(2), 187–194 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Dang, Y. Chen, and X. Chen, “Performance Enhancement for Ultrashort-Pulse Wavelength Conversion by Using an Aperiodic Domain-Inverted Optical Superlattice,” IEEE Photon. Technol. Lett.24(5), 347–349 (2012).
[CrossRef]

J. Appl. Phys. (2)

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys.51(1), 50–60 (1980).
[CrossRef]

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

J. Opt. Soc. Korea (1)

J. Phys. D (1)

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D28(9), 1747–1763 (1995).
[CrossRef]

Opt. Commun. (1)

H. E. Major, C. B. E. Gawith, and P. G. R. Smith, “Gouy phase compensation in quasiphase matching,” Opt. Commun.281(19), 5036–5040 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. (2)

D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev.148(1), 302–312 (1966).
[CrossRef]

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams,” Phys. Rev.145(1), 338–379 (1966).
[CrossRef]

Other (1)

T. Kirk, McDonald, Second-order paraxial Gaussian beam (Joseph Henry Laboratories, Princeton University, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the designed SC-APPLN. (b) Part of the fabricated sample viewed under microscope after etching.

Fig. 2
Fig. 2

(a) Normalized effective second-order nonlinearity vs. grating length as a function of focused beam waist and (b-d) Normalized measured and simulated SHG efficiency vs. FH wavelength, for a focused light with different beam waists. In the legend “T” and “E” represent theoretical and experimental result, respectively.

Fig. 3
Fig. 3

Normalized measured and simulated SHG efficiency vs. FH wavelength for focused light with beam waist of 20 µm for four different focusing positions f, within the SC-APPLN device. In the legend “T” and “E” are theoretical and experimental data, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d A 1 dz = 2j ω 1 2 d(z) n 1 c A 2 A 1 e jΔkz d A 2 dz = 2j ω 2 2 d(z) n 2 c A 1 2 e jΔkz
Λ i = Λ 1 +(i1)Δ,
E 1y (z)= E 0 1+iζ exp( x 2 + y 2 ω 0 2 (1+iζ) ) e (ikz) ,
E 2 ( r , z )= i k 2 E 0 4 n 2 exp( 2( x 2 + y 2 ) ω 0 2 (1+i ζ ) ) [ d(z) 1+iζ(z) ] exp(iΔkz)dz,

Metrics