Abstract

We demonstrate theoretically and experimentally, that the non-uniform spectra of second harmonic generation (SHG) from an unapodized step-chirped periodically poled nonlinear optical grating can be apodized utilizing tightly-focused Gaussian beams to suppress the ripple in its wideband response. In our example, by increasing focusing, a ripple-free response is progressively achieved over a 6-dB bandwidth of >5nm, with a beam waist of 20 µm. With this tight focusing arrangement, a continuous tuning of 11-nm is also demonstrated by simply changing the focal point by 5.8 mm within the step-chirped grating based APPLN.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband wavelength conversion based on apodized χ(2) grating

T. Umeki, M. Asobe, T. Yanagawa, O. Tadanaga, Y. Nishida, K. Magari, and H. Suzuki
J. Opt. Soc. Am. B 26(12) 2315-2322 (2009)

Design, fabrication and characterization of a specially apodized chirped grating for reciprocal second harmonic generation

Ameneh Bostani, Meenu Ahlawat, Amirhossein Tehranchi, Roberto Morandotti, and Raman Kashyap
Opt. Express 23(4) 5183-5189 (2015)

Engineering of effective second-order nonlinearity in uniform and chirped gratings

Ameneh Bostani, Amirhossein Tehranchi, and Raman Kashyap
J. Opt. Soc. Am. B 29(10) 2929-2934 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
    [Crossref]
  2. M. Ahlawat, A. Bostani, A. Tehranchi, and R. Kashyap, “Agile multicasting based on cascaded χ(2) nonlinearities in a step-chirped periodically poled lithium niobate,” Opt. Lett. 38(15), 2760–2762 (2013).
    [Crossref] [PubMed]
  3. G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFGDFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18(6), 6064–6070 (2010).
    [Crossref]
  4. A. Bogoni, X. Wu, I. Fazal, and A. E. Willner, “Photonic processing of 320 Gbits/s based on sum-/difference-frequency generation and pump depletion in a single PPLN waveguide,” Opt. Lett. 34(12), 1825–1827 (2009).
    [Crossref] [PubMed]
  5. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett. 24(16), 1157–1159 (1999).
    [Crossref] [PubMed]
  6. W. Dang, Y. Chen, and X. Chen, “Performance Enhancement for Ultrashort-Pulse Wavelength Conversion by Using an Aperiodic Domain-Inverted Optical Superlattice,” IEEE Photon. Technol. Lett. 24(5), 347–349 (2012).
    [Crossref]
  7. M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28(9), 1747–1763 (1995).
    [Crossref]
  8. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33(16), 1804–1806 (2008).
    [Crossref] [PubMed]
  9. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
    [Crossref]
  10. A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45(2), 187–194 (2009).
    [Crossref]
  11. A. Tehranchi and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second-harmonic generation,” J. Lightwave Technol. 26(3), 343–349 (2008).
    [Crossref]
  12. A. Bostani, A. Tehranchi, and R. Kashyap, “Engineering of effective second-order nonlinearity in uniform and chirped gratings,” J. Opt. Soc. Am. B 29(10), 2929–2934 (2012).
    [Crossref]
  13. C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B 30(6), 1551–1568 (2013).
    [Crossref]
  14. S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980).
    [Crossref]
  15. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  16. D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams,” Phys. Rev. 145(1), 338–379 (1966).
    [Crossref]
  17. S. Feng and H. G. Winful, “Physical origin of the Gouy phase shift,” Opt. Lett. 26(8), 485–487 (2001).
    [Crossref] [PubMed]
  18. H. E. Major, C. B. E. Gawith, and P. G. R. Smith, “Gouy phase compensation in quasiphase matching,” Opt. Commun. 281(19), 5036–5040 (2008).
    [Crossref]
  19. N. Lastzka and R. Schnabel, “The Gouy phase shift in nonlinear interactions of waves,” Opt. Express 15(12), 7211–7217 (2007).
    [Crossref] [PubMed]
  20. R. Shiloh and A. Arie, “Poling pattern for efficient frequency doubling of Gaussian beams,” Appl. Phys. B 109(4), 573–579 (2012).
    [Crossref]
  21. D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev. 148(1), 302–312 (1966).
    [Crossref]
  22. T. Kirk, McDonald, Second-order paraxial Gaussian beam (Joseph Henry Laboratories, Princeton University, 2009).
  23. K. Pandiyan, Y.-S. Kang, H.-H. Lim, B.-J. Kim, O. Prakash, and M.-S. Cha, “Poling quality evaluation of periodically poled lithium niobate using diffraction method,” J. Opt. Soc. Korea 12(3), 205–209 (2008).
    [Crossref]

2013 (2)

2012 (3)

A. Bostani, A. Tehranchi, and R. Kashyap, “Engineering of effective second-order nonlinearity in uniform and chirped gratings,” J. Opt. Soc. Am. B 29(10), 2929–2934 (2012).
[Crossref]

W. Dang, Y. Chen, and X. Chen, “Performance Enhancement for Ultrashort-Pulse Wavelength Conversion by Using an Aperiodic Domain-Inverted Optical Superlattice,” IEEE Photon. Technol. Lett. 24(5), 347–349 (2012).
[Crossref]

R. Shiloh and A. Arie, “Poling pattern for efficient frequency doubling of Gaussian beams,” Appl. Phys. B 109(4), 573–579 (2012).
[Crossref]

2010 (1)

2009 (2)

A. Bogoni, X. Wu, I. Fazal, and A. E. Willner, “Photonic processing of 320 Gbits/s based on sum-/difference-frequency generation and pump depletion in a single PPLN waveguide,” Opt. Lett. 34(12), 1825–1827 (2009).
[Crossref] [PubMed]

A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45(2), 187–194 (2009).
[Crossref]

2008 (4)

2007 (1)

2006 (1)

2001 (1)

1999 (1)

1995 (1)

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28(9), 1747–1763 (1995).
[Crossref]

1990 (1)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

1980 (1)

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

1966 (2)

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev. 148(1), 302–312 (1966).
[Crossref]

Ahlawat, M.

Arie, A.

R. Shiloh and A. Arie, “Poling pattern for efficient frequency doubling of Gaussian beams,” Appl. Phys. B 109(4), 573–579 (2012).
[Crossref]

Ashkin, A.

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

Bogoni, A.

Bostani, A.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

Brener, I.

Cha, M.-S.

Chang, D.

Chen, X.

W. Dang, Y. Chen, and X. Chen, “Performance Enhancement for Ultrashort-Pulse Wavelength Conversion by Using an Aperiodic Domain-Inverted Optical Superlattice,” IEEE Photon. Technol. Lett. 24(5), 347–349 (2012).
[Crossref]

Chen, Y.

W. Dang, Y. Chen, and X. Chen, “Performance Enhancement for Ultrashort-Pulse Wavelength Conversion by Using an Aperiodic Domain-Inverted Optical Superlattice,” IEEE Photon. Technol. Lett. 24(5), 347–349 (2012).
[Crossref]

Chou, M. H.

Dang, W.

W. Dang, Y. Chen, and X. Chen, “Performance Enhancement for Ultrashort-Pulse Wavelength Conversion by Using an Aperiodic Domain-Inverted Optical Superlattice,” IEEE Photon. Technol. Lett. 24(5), 347–349 (2012).
[Crossref]

Falk, J.

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980).
[Crossref]

Fazal, I.

Fejer, M. M.

Feng, S.

Furukawa, H.

Gallmann, L.

Gawith, C. B. E.

H. E. Major, C. B. E. Gawith, and P. G. R. Smith, “Gouy phase compensation in quasiphase matching,” Opt. Commun. 281(19), 5036–5040 (2008).
[Crossref]

Guha, S.

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980).
[Crossref]

Houe, M.

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28(9), 1747–1763 (1995).
[Crossref]

Huang, D.

Ito, H.

Kang, Y.-S.

Kashyap, R.

Kim, B.-J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev. 148(1), 302–312 (1966).
[Crossref]

Kumar, S.

Langrock, C.

Lastzka, N.

Lim, H.-H.

Lin, Y. W.

Lu, G.-W.

Major, H. E.

H. E. Major, C. B. E. Gawith, and P. G. R. Smith, “Gouy phase compensation in quasiphase matching,” Opt. Commun. 281(19), 5036–5040 (2008).
[Crossref]

McGeehan, J. E.

Miller, R. C.

D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev. 148(1), 302–312 (1966).
[Crossref]

Miyazaki, T.

Nishihara, H.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

Pandiyan, K.

Parameswaran, K. R.

Phillips, C. R.

Prakash, O.

Schnabel, R.

Shiloh, R.

R. Shiloh and A. Arie, “Poling pattern for efficient frequency doubling of Gaussian beams,” Appl. Phys. B 109(4), 573–579 (2012).
[Crossref]

Shinada, S.

Smith, P. G. R.

H. E. Major, C. B. E. Gawith, and P. G. R. Smith, “Gouy phase compensation in quasiphase matching,” Opt. Commun. 281(19), 5036–5040 (2008).
[Crossref]

Suhara, T.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

Sun, J.

Tehranchi, A.

Townsend, P. D.

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28(9), 1747–1763 (1995).
[Crossref]

Wada, N.

Wang, J.

Willner, A. E.

Winful, H. G.

Wu, X.

Zhang, X.

Appl. Phys. B (1)

R. Shiloh and A. Arie, “Poling pattern for efficient frequency doubling of Gaussian beams,” Appl. Phys. B 109(4), 573–579 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45(2), 187–194 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

W. Dang, Y. Chen, and X. Chen, “Performance Enhancement for Ultrashort-Pulse Wavelength Conversion by Using an Aperiodic Domain-Inverted Optical Superlattice,” IEEE Photon. Technol. Lett. 24(5), 347–349 (2012).
[Crossref]

J. Appl. Phys. (2)

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980).
[Crossref]

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

J. Opt. Soc. Korea (1)

J. Phys. D (1)

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28(9), 1747–1763 (1995).
[Crossref]

Opt. Commun. (1)

H. E. Major, C. B. E. Gawith, and P. G. R. Smith, “Gouy phase compensation in quasiphase matching,” Opt. Commun. 281(19), 5036–5040 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. (2)

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev. 148(1), 302–312 (1966).
[Crossref]

Other (1)

T. Kirk, McDonald, Second-order paraxial Gaussian beam (Joseph Henry Laboratories, Princeton University, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the designed SC-APPLN. (b) Part of the fabricated sample viewed under microscope after etching.

Fig. 2
Fig. 2

(a) Normalized effective second-order nonlinearity vs. grating length as a function of focused beam waist and (b-d) Normalized measured and simulated SHG efficiency vs. FH wavelength, for a focused light with different beam waists. In the legend “T” and “E” represent theoretical and experimental result, respectively.

Fig. 3
Fig. 3

Normalized measured and simulated SHG efficiency vs. FH wavelength for focused light with beam waist of 20 µm for four different focusing positions f, within the SC-APPLN device. In the legend “T” and “E” are theoretical and experimental data, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d A 1 dz = 2j ω 1 2 d(z) n 1 c A 2 A 1 e jΔkz d A 2 dz = 2j ω 2 2 d(z) n 2 c A 1 2 e jΔkz
Λ i = Λ 1 +(i1)Δ,
E 1y (z)= E 0 1+iζ exp( x 2 + y 2 ω 0 2 (1+iζ) ) e (ikz) ,
E 2 ( r , z )= i k 2 E 0 4 n 2 exp( 2( x 2 + y 2 ) ω 0 2 (1+i ζ ) ) [ d(z) 1+iζ(z) ] exp(iΔkz)dz,

Metrics