Abstract

We present a low-cost method to fabricate large-area polycarbonate AR nanostructures to improve the luminous intensity and image clarity of a commercial 2.0-inch display panel in bright condition. The polycarbonate AR nanostructures were nanoimprinted by the graded-density nanoporous silicon template with nanoparticle-catalyzed etching. The average reflectivity of the AR film in visible wavelength region was reduced from 10.2% to 4.8% in the optimized case. After attaching on the display panel to reduce the light reflection on the substrate, the brightness enhancement and decrease of ambient light reflection were observed. Due to the enhancement of contrast ratio, the quality index of the Lena image test was improved from 0.85 to 0.92 under strong ambient illumination.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Clapham and M. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
    [CrossRef]
  2. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
    [CrossRef]
  3. W. Luk, K. Yeung, K. Tam, K. Ng, K. Kwok, C. Kwong, A. Ng, and A. Djurišić, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron.12(4), 557–561 (2011).
    [CrossRef]
  4. J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012).
    [CrossRef]
  5. J. W. Leem, Y. Yeh, and J. S. Yu, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express20(4), 4056–4066 (2012).
    [CrossRef] [PubMed]
  6. Y.-H. Ho, C.-C. Liu, S.-W. Liu, H. Liang, C.-W. Chu, and P.-K. Wei, “Efficiency enhancement of flexible organic light-emitting devices by using antireflection nanopillars,” Opt. Express19(S3), A295–A302 (2011).
    [CrossRef] [PubMed]
  7. H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci.6(6), 1929–1937 (2013).
    [CrossRef]
  8. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett.8(11), 584–586 (1983).
    [CrossRef] [PubMed]
  9. M. J. Minot, “Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 µ,” J. Opt. Soc. Am.66(6), 515–519 (1976).
    [CrossRef]
  10. S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
    [CrossRef] [PubMed]
  11. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).
  12. Y.-C. Lee, C.-C. Chang, and Y.-Y. Chou, “Experimental and simulation studies of anti-reflection sub-micron conical structures on a GaAs substrate,” Opt. Express21(S1), A36–A41 (2013).
    [CrossRef] [PubMed]
  13. J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, and X. Gao, “Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores,” ACS Appl. Mater. Interfaces4(10), 5678–5683 (2012).
    [CrossRef] [PubMed]
  14. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
    [CrossRef] [PubMed]
  15. K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater.22(33), 3713–3718 (2010).
    [CrossRef] [PubMed]
  16. K. Choi, S. H. Park, Y. M. Song, C. Cho, and H. S. Lee, “Robustly nano-tailored honeycomb structure for high-throughput antireflection polymer films,” J. Mater. Chem.22(33), 17037–17043 (2012).
    [CrossRef]
  17. H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett.94(23), 231121 (2009).
    [CrossRef]
  18. L. Schirone, G. Sotgiu, and F. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films297(1–2), 296–298 (1997).
    [CrossRef]
  19. T. Chow, P. Maciel, and G. Fanelli, “Reactive ion etching of silicon in CCl4 and HCl plasmas,” J. Electrochem. Soc.134(5), 1281–1286 (1987).
    [CrossRef]
  20. F. Nicoll, “Anomalous interference films on glass by chemical treatment,” J. Opt. Soc. Am.42(4), 241–242 (1952).
    [CrossRef]
  21. Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett.96(15), 153305 (2010).
    [CrossRef]
  22. S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale4(15), 4603–4610 (2012).
    [CrossRef] [PubMed]
  23. X. Li, L. Xue, and Y. Han, “Broadband antireflection of block copolymer/homopolymer blend films with gradient refractive index structures,” J. Mater. Chem.21(15), 5817–5826 (2011).
    [CrossRef]
  24. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008).
    [CrossRef]
  25. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).
  26. M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett.33(21), 2527–2529 (2008).
    [CrossRef] [PubMed]
  27. H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
    [CrossRef]
  28. J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express19(15), 14411–14419 (2011).
    [CrossRef] [PubMed]
  29. P.-S. Lee, O.-J. Lee, S.-K. Hwang, S.-H. Jung, S. E. Jee, and K.-H. Lee, “Vertically aligned nanopillar arrays with hard skins using anodic aluminum oxide for nano imprint lithography,” Chem. Mater.17(24), 6181–6185 (2005).
    [CrossRef]
  30. W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009).
    [CrossRef]
  31. H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett.99(18), 183107 (2011).
    [CrossRef]
  32. C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology19(20), 205301 (2008).
    [CrossRef] [PubMed]
  33. J.-T. Wu, S.-Y. Yang, W.-C. Deng, and W.-Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng.87(10), 1951–1954 (2010).
    [CrossRef]
  34. M.-N. Lin, M.-T. Lin, C. Y. Liu, M. Lai, N. Liu, C. Peng, H. Wang, and Y. Wang, “Long-range ordered nanoaperture array with uniform diameter and interpore spacing,” Appl. Phys. Lett.87, 173116 (2005).
    [CrossRef]
  35. Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).
  36. K.-Y. Chen, Y.-T. Chang, Y.-H. Ho, H.-Y. Lin, J.-H. Lee, and M.-K. Wei, “Emitter apodization dependent angular luminance enhancement of microlens-array film attached organic light-emitting devices,” Opt. Express18(4), 3238–3243 (2010).
    [CrossRef] [PubMed]
  37. H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express16(15), 11044–11051 (2008).
    [CrossRef] [PubMed]
  38. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002).
    [CrossRef]
  39. Z. Wu, L. Wang, and Y. Qiu, “Contrast-enhancement in organic light-emitting diodes,” Opt. Express13(5), 1406–1411 (2005).
    [CrossRef] [PubMed]

2013 (3)

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci.6(6), 1929–1937 (2013).
[CrossRef]

Y.-C. Lee, C.-C. Chang, and Y.-Y. Chou, “Experimental and simulation studies of anti-reflection sub-micron conical structures on a GaAs substrate,” Opt. Express21(S1), A36–A41 (2013).
[CrossRef] [PubMed]

Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).

2012 (6)

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale4(15), 4603–4610 (2012).
[CrossRef] [PubMed]

J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, and X. Gao, “Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores,” ACS Appl. Mater. Interfaces4(10), 5678–5683 (2012).
[CrossRef] [PubMed]

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

K. Choi, S. H. Park, Y. M. Song, C. Cho, and H. S. Lee, “Robustly nano-tailored honeycomb structure for high-throughput antireflection polymer films,” J. Mater. Chem.22(33), 17037–17043 (2012).
[CrossRef]

J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012).
[CrossRef]

J. W. Leem, Y. Yeh, and J. S. Yu, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express20(4), 4056–4066 (2012).
[CrossRef] [PubMed]

2011 (6)

Y.-H. Ho, C.-C. Liu, S.-W. Liu, H. Liang, C.-W. Chu, and P.-K. Wei, “Efficiency enhancement of flexible organic light-emitting devices by using antireflection nanopillars,” Opt. Express19(S3), A295–A302 (2011).
[CrossRef] [PubMed]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
[CrossRef]

W. Luk, K. Yeung, K. Tam, K. Ng, K. Kwok, C. Kwong, A. Ng, and A. Djurišić, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron.12(4), 557–561 (2011).
[CrossRef]

X. Li, L. Xue, and Y. Han, “Broadband antireflection of block copolymer/homopolymer blend films with gradient refractive index structures,” J. Mater. Chem.21(15), 5817–5826 (2011).
[CrossRef]

J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express19(15), 14411–14419 (2011).
[CrossRef] [PubMed]

H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett.99(18), 183107 (2011).
[CrossRef]

2010 (4)

K.-Y. Chen, Y.-T. Chang, Y.-H. Ho, H.-Y. Lin, J.-H. Lee, and M.-K. Wei, “Emitter apodization dependent angular luminance enhancement of microlens-array film attached organic light-emitting devices,” Opt. Express18(4), 3238–3243 (2010).
[CrossRef] [PubMed]

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett.96(15), 153305 (2010).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater.22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

J.-T. Wu, S.-Y. Yang, W.-C. Deng, and W.-Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng.87(10), 1951–1954 (2010).
[CrossRef]

2009 (4)

W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009).
[CrossRef]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett.94(23), 231121 (2009).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

2008 (4)

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett.33(21), 2527–2529 (2008).
[CrossRef] [PubMed]

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008).
[CrossRef]

H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express16(15), 11044–11051 (2008).
[CrossRef] [PubMed]

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology19(20), 205301 (2008).
[CrossRef] [PubMed]

2007 (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

2005 (3)

P.-S. Lee, O.-J. Lee, S.-K. Hwang, S.-H. Jung, S. E. Jee, and K.-H. Lee, “Vertically aligned nanopillar arrays with hard skins using anodic aluminum oxide for nano imprint lithography,” Chem. Mater.17(24), 6181–6185 (2005).
[CrossRef]

Z. Wu, L. Wang, and Y. Qiu, “Contrast-enhancement in organic light-emitting diodes,” Opt. Express13(5), 1406–1411 (2005).
[CrossRef] [PubMed]

M.-N. Lin, M.-T. Lin, C. Y. Liu, M. Lai, N. Liu, C. Peng, H. Wang, and Y. Wang, “Long-range ordered nanoaperture array with uniform diameter and interpore spacing,” Appl. Phys. Lett.87, 173116 (2005).
[CrossRef]

2002 (1)

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002).
[CrossRef]

1999 (1)

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
[CrossRef] [PubMed]

1997 (1)

L. Schirone, G. Sotgiu, and F. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films297(1–2), 296–298 (1997).
[CrossRef]

1987 (1)

T. Chow, P. Maciel, and G. Fanelli, “Reactive ion etching of silicon in CCl4 and HCl plasmas,” J. Electrochem. Soc.134(5), 1281–1286 (1987).
[CrossRef]

1983 (1)

1976 (1)

1973 (1)

P. Clapham and M. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

1952 (1)

Barbastathis, G.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Bayindir, M.

H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett.99(18), 183107 (2011).
[CrossRef]

Bovik, A. C.

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002).
[CrossRef]

Branz, H. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett.94(23), 231121 (2009).
[CrossRef]

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Buyukserin, F.

H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett.99(18), 183107 (2011).
[CrossRef]

Cai, J.

J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012).
[CrossRef]

Califano, F.

L. Schirone, G. Sotgiu, and F. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films297(1–2), 296–298 (1997).
[CrossRef]

Chang, C.-C.

Chang, C.-H.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Chang, W. L.

Chang, W.-Y.

J.-T. Wu, S.-Y. Yang, W.-C. Deng, and W.-Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng.87(10), 1951–1954 (2010).
[CrossRef]

Chang, Y.-T.

Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).

K.-Y. Chen, Y.-T. Chang, Y.-H. Ho, H.-Y. Lin, J.-H. Lee, and M.-K. Wei, “Emitter apodization dependent angular luminance enhancement of microlens-array film attached organic light-emitting devices,” Opt. Express18(4), 3238–3243 (2010).
[CrossRef] [PubMed]

Chen, C.

J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, and X. Gao, “Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores,” ACS Appl. Mater. Interfaces4(10), 5678–5683 (2012).
[CrossRef] [PubMed]

Chen, C.-T.

Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).

Chen, J. Y.

Chen, K.-Y.

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Chen, S.

J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012).
[CrossRef]

J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012).
[CrossRef]

Chhajed, S.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008).
[CrossRef]

Cho, C.

K. Choi, S. H. Park, Y. M. Song, C. Cho, and H. S. Lee, “Robustly nano-tailored honeycomb structure for high-throughput antireflection polymer films,” J. Mater. Chem.22(33), 17037–17043 (2012).
[CrossRef]

Cho, J.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008).
[CrossRef]

Choi, H. J.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Choi, K.

K. Choi, S. H. Park, Y. M. Song, C. Cho, and H. S. Lee, “Robustly nano-tailored honeycomb structure for high-throughput antireflection polymer films,” J. Mater. Chem.22(33), 17037–17043 (2012).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater.22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Chou, C.-P.

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology19(20), 205301 (2008).
[CrossRef] [PubMed]

Chou, Y.-Y.

Chow, T.

T. Chow, P. Maciel, and G. Fanelli, “Reactive ion etching of silicon in CCl4 and HCl plasmas,” J. Electrochem. Soc.134(5), 1281–1286 (1987).
[CrossRef]

Chu, C.-W.

Clapham, P.

P. Clapham and M. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Cohen, R. E.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Crawford, M. H.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008).
[CrossRef]

Deng, W.-C.

J.-T. Wu, S.-Y. Yang, W.-C. Deng, and W.-Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng.87(10), 1951–1954 (2010).
[CrossRef]

Deniz, H.

H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett.99(18), 183107 (2011).
[CrossRef]

Dinachali, S. S.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci.6(6), 1929–1937 (2013).
[CrossRef]

Djurišic, A.

W. Luk, K. Yeung, K. Tam, K. Ng, K. Kwok, C. Kwong, A. Ng, and A. Djurišić, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron.12(4), 557–561 (2011).
[CrossRef]

Dong, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).

Fanelli, G.

T. Chow, P. Maciel, and G. Fanelli, “Reactive ion etching of silicon in CCl4 and HCl plasmas,” J. Electrochem. Soc.134(5), 1281–1286 (1987).
[CrossRef]

Fang, J.-H.

Feng, S.

W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009).
[CrossRef]

Fischer, A. J.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008).
[CrossRef]

Fu, C.-C.

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology19(20), 205301 (2008).
[CrossRef] [PubMed]

Ganesh, V. A.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci.6(6), 1929–1937 (2013).
[CrossRef]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
[CrossRef]

Gao, X.

J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, and X. Gao, “Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores,” ACS Appl. Mater. Interfaces4(10), 5678–5683 (2012).
[CrossRef] [PubMed]

Han, Y.

X. Li, L. Xue, and Y. Han, “Broadband antireflection of block copolymer/homopolymer blend films with gradient refractive index structures,” J. Mater. Chem.21(15), 5817–5826 (2011).
[CrossRef]

Hao, Q.

J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, and X. Gao, “Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores,” ACS Appl. Mater. Interfaces4(10), 5678–5683 (2012).
[CrossRef] [PubMed]

He, A. Y.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci.6(6), 1929–1937 (2013).
[CrossRef]

Ho, Y.-H.

Hsu, S.-C.

Huang, C. K.

Huang, M.-C.

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology19(20), 205301 (2008).
[CrossRef] [PubMed]

Hutley, M.

P. Clapham and M. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Hwang, S.-K.

P.-S. Lee, O.-J. Lee, S.-K. Hwang, S.-H. Jung, S. E. Jee, and K.-H. Lee, “Vertically aligned nanopillar arrays with hard skins using anodic aluminum oxide for nano imprint lithography,” Chem. Mater.17(24), 6181–6185 (2005).
[CrossRef]

Hwangbo, C. K.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater.22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Jee, S. E.

P.-S. Lee, O.-J. Lee, S.-K. Hwang, S.-H. Jung, S. E. Jee, and K.-H. Lee, “Vertically aligned nanopillar arrays with hard skins using anodic aluminum oxide for nano imprint lithography,” Chem. Mater.17(24), 6181–6185 (2005).
[CrossRef]

Ji, S.

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale4(15), 4603–4610 (2012).
[CrossRef] [PubMed]

Jia, F.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).

Jin, S.

J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012).
[CrossRef]

Jones, K. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett.94(23), 231121 (2009).
[CrossRef]

Jung, S.-H.

P.-S. Lee, O.-J. Lee, S.-K. Hwang, S.-H. Jung, S. E. Jee, and K.-H. Lee, “Vertically aligned nanopillar arrays with hard skins using anodic aluminum oxide for nano imprint lithography,” Chem. Mater.17(24), 6181–6185 (2005).
[CrossRef]

Khudiyev, T.

H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett.99(18), 183107 (2011).
[CrossRef]

Kim, H.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008).
[CrossRef]

Kim, J. K.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008).
[CrossRef]

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett.33(21), 2527–2529 (2008).
[CrossRef] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Kim, Y. S.

Kuo, M.-L.

Kwok, K.

W. Luk, K. Yeung, K. Tam, K. Ng, K. Kwok, C. Kwong, A. Ng, and A. Djurišić, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron.12(4), 557–561 (2011).
[CrossRef]

Kwong, C.

W. Luk, K. Yeung, K. Tam, K. Ng, K. Kwok, C. Kwong, A. Ng, and A. Djurišić, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron.12(4), 557–561 (2011).
[CrossRef]

Lai, M.

M.-N. Lin, M.-T. Lin, C. Y. Liu, M. Lai, N. Liu, C. Peng, H. Wang, and Y. Wang, “Long-range ordered nanoaperture array with uniform diameter and interpore spacing,” Appl. Phys. Lett.87, 173116 (2005).
[CrossRef]

Law, J.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci.6(6), 1929–1937 (2013).
[CrossRef]

Lee, C.-C.

Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).

Lee, H. S.

K. Choi, S. H. Park, Y. M. Song, C. Cho, and H. S. Lee, “Robustly nano-tailored honeycomb structure for high-throughput antireflection polymer films,” J. Mater. Chem.22(33), 17037–17043 (2012).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater.22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Lee, J.-H.

Lee, K.-H.

P.-S. Lee, O.-J. Lee, S.-K. Hwang, S.-H. Jung, S. E. Jee, and K.-H. Lee, “Vertically aligned nanopillar arrays with hard skins using anodic aluminum oxide for nano imprint lithography,” Chem. Mater.17(24), 6181–6185 (2005).
[CrossRef]

Lee, O.-J.

P.-S. Lee, O.-J. Lee, S.-K. Hwang, S.-H. Jung, S. E. Jee, and K.-H. Lee, “Vertically aligned nanopillar arrays with hard skins using anodic aluminum oxide for nano imprint lithography,” Chem. Mater.17(24), 6181–6185 (2005).
[CrossRef]

Lee, P.-S.

P.-S. Lee, O.-J. Lee, S.-K. Hwang, S.-H. Jung, S. E. Jee, and K.-H. Lee, “Vertically aligned nanopillar arrays with hard skins using anodic aluminum oxide for nano imprint lithography,” Chem. Mater.17(24), 6181–6185 (2005).
[CrossRef]

Lee, Y. T.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater.22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Lee, Y.-C.

Lee, Y.-T.

Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).

Leem, J. W.

Li, C.

J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, and X. Gao, “Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores,” ACS Appl. Mater. Interfaces4(10), 5678–5683 (2012).
[CrossRef] [PubMed]

Li, F.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett.96(15), 153305 (2010).
[CrossRef]

Li, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).

Li, J.

J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, and X. Gao, “Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores,” ACS Appl. Mater. Interfaces4(10), 5678–5683 (2012).
[CrossRef] [PubMed]

Li, X.

X. Li, L. Xue, and Y. Han, “Broadband antireflection of block copolymer/homopolymer blend films with gradient refractive index structures,” J. Mater. Chem.21(15), 5817–5826 (2011).
[CrossRef]

W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009).
[CrossRef]

Li, Y.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett.96(15), 153305 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).

Liang, H.

Lim, H.

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale4(15), 4603–4610 (2012).
[CrossRef] [PubMed]

Lin, H.-Y.

Lin, M.-N.

M.-N. Lin, M.-T. Lin, C. Y. Liu, M. Lai, N. Liu, C. Peng, H. Wang, and Y. Wang, “Long-range ordered nanoaperture array with uniform diameter and interpore spacing,” Appl. Phys. Lett.87, 173116 (2005).
[CrossRef]

Lin, M.-T.

M.-N. Lin, M.-T. Lin, C. Y. Liu, M. Lai, N. Liu, C. Peng, H. Wang, and Y. Wang, “Long-range ordered nanoaperture array with uniform diameter and interpore spacing,” Appl. Phys. Lett.87, 173116 (2005).
[CrossRef]

Lin, S.-Y.

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett.33(21), 2527–2529 (2008).
[CrossRef] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Liu, C. Y.

M.-N. Lin, M.-T. Lin, C. Y. Liu, M. Lai, N. Liu, C. Peng, H. Wang, and Y. Wang, “Long-range ordered nanoaperture array with uniform diameter and interpore spacing,” Appl. Phys. Lett.87, 173116 (2005).
[CrossRef]

Liu, C.-C.

Liu, N.

M.-N. Lin, M.-T. Lin, C. Y. Liu, M. Lai, N. Liu, C. Peng, H. Wang, and Y. Wang, “Long-range ordered nanoaperture array with uniform diameter and interpore spacing,” Appl. Phys. Lett.87, 173116 (2005).
[CrossRef]

Liu, S.-W.

Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).

Y.-H. Ho, C.-C. Liu, S.-W. Liu, H. Liang, C.-W. Chu, and P.-K. Wei, “Efficiency enhancement of flexible organic light-emitting devices by using antireflection nanopillars,” Opt. Express19(S3), A295–A302 (2011).
[CrossRef] [PubMed]

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Liu, Y.

W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009).
[CrossRef]

Luk, W.

W. Luk, K. Yeung, K. Tam, K. Ng, K. Kwok, C. Kwong, A. Ng, and A. Djurišić, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron.12(4), 557–561 (2011).
[CrossRef]

Ma, Y.

J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012).
[CrossRef]

Maciel, P.

T. Chow, P. Maciel, and G. Fanelli, “Reactive ion etching of silicon in CCl4 and HCl plasmas,” J. Electrochem. Soc.134(5), 1281–1286 (1987).
[CrossRef]

McKinley, G. H.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Meier, D. L.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Min, G.

W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009).
[CrossRef]

Minot, M. J.

Mlynek, J.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Mont, F. W.

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
[CrossRef]

Ng, A.

W. Luk, K. Yeung, K. Tam, K. Ng, K. Kwok, C. Kwong, A. Ng, and A. Djurišić, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron.12(4), 557–561 (2011).
[CrossRef]

Ng, K.

W. Luk, K. Yeung, K. Tam, K. Ng, K. Kwok, C. Kwong, A. Ng, and A. Djurišić, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron.12(4), 557–561 (2011).
[CrossRef]

Nicoll, F.

Niu, X.

W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009).
[CrossRef]

Page, M. R.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Park, J.

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale4(15), 4603–4610 (2012).
[CrossRef] [PubMed]

Park, K.-C.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Park, S. H.

K. Choi, S. H. Park, Y. M. Song, C. Cho, and H. S. Lee, “Robustly nano-tailored honeycomb structure for high-throughput antireflection polymer films,” J. Mater. Chem.22(33), 17037–17043 (2012).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater.22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Peng, C.

M.-N. Lin, M.-T. Lin, C. Y. Liu, M. Lai, N. Liu, C. Peng, H. Wang, and Y. Wang, “Long-range ordered nanoaperture array with uniform diameter and interpore spacing,” Appl. Phys. Lett.87, 173116 (2005).
[CrossRef]

Poxson, D. J.

Qi, L.

J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012).
[CrossRef]

Qiu, Y.

Ramakrishna, S.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci.6(6), 1929–1937 (2013).
[CrossRef]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
[CrossRef]

Raut, H. K.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci.6(6), 1929–1937 (2013).
[CrossRef]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
[CrossRef]

Saifullah, M. S.

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci.6(6), 1929–1937 (2013).
[CrossRef]

Schäffer, E.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Schirone, L.

L. Schirone, G. Sotgiu, and F. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films297(1–2), 296–298 (1997).
[CrossRef]

Schubert, E. F.

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett.33(21), 2527–2529 (2008).
[CrossRef] [PubMed]

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008).
[CrossRef]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Schubert, M. F.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008).
[CrossRef]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Sone, C.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008).
[CrossRef]

Song, Y. M.

K. Choi, S. H. Park, Y. M. Song, C. Cho, and H. S. Lee, “Robustly nano-tailored honeycomb structure for high-throughput antireflection polymer films,” J. Mater. Chem.22(33), 17037–17043 (2012).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater.22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Song, Z.

W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009).
[CrossRef]

Sotgiu, G.

L. Schirone, G. Sotgiu, and F. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films297(1–2), 296–298 (1997).
[CrossRef]

Southwell, W. H.

Steiner, U.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Stradins, P.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett.94(23), 231121 (2009).
[CrossRef]

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Sun, K. W.

Sun, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).

Tam, K.

W. Luk, K. Yeung, K. Tam, K. Ng, K. Kwok, C. Kwong, A. Ng, and A. Djurišić, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron.12(4), 557–561 (2011).
[CrossRef]

Ting, C.-J.

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology19(20), 205301 (2008).
[CrossRef] [PubMed]

To, B.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett.94(23), 231121 (2009).
[CrossRef]

Tsai, H.-Y.

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology19(20), 205301 (2008).
[CrossRef] [PubMed]

Tsai, J.-H.

Walheim, S.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Wang, C.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett.96(15), 153305 (2010).
[CrossRef]

Wang, H.

M.-N. Lin, M.-T. Lin, C. Y. Liu, M. Lai, N. Liu, C. Peng, H. Wang, and Y. Wang, “Long-range ordered nanoaperture array with uniform diameter and interpore spacing,” Appl. Phys. Lett.87, 173116 (2005).
[CrossRef]

Wang, L.

Wang, Y.

M.-N. Lin, M.-T. Lin, C. Y. Liu, M. Lai, N. Liu, C. Peng, H. Wang, and Y. Wang, “Long-range ordered nanoaperture array with uniform diameter and interpore spacing,” Appl. Phys. Lett.87, 173116 (2005).
[CrossRef]

Wang, Z.

J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, and X. Gao, “Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores,” ACS Appl. Mater. Interfaces4(10), 5678–5683 (2012).
[CrossRef] [PubMed]

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett.96(15), 153305 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002).
[CrossRef]

Ward, S.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett.94(23), 231121 (2009).
[CrossRef]

Wei, M.-K.

Wei, P.-K.

Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).

Y.-H. Ho, C.-C. Liu, S.-W. Liu, H. Liang, C.-W. Chu, and P.-K. Wei, “Efficiency enhancement of flexible organic light-emitting devices by using antireflection nanopillars,” Opt. Express19(S3), A295–A302 (2011).
[CrossRef] [PubMed]

Wu, C.-I.

Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).

Wu, J.-T.

J.-T. Wu, S.-Y. Yang, W.-C. Deng, and W.-Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng.87(10), 1951–1954 (2010).
[CrossRef]

Wu, M.-F.

Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).

Wu, T.-C.

Wu, Z.

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Xue, L.

X. Li, L. Xue, and Y. Han, “Broadband antireflection of block copolymer/homopolymer blend films with gradient refractive index structures,” J. Mater. Chem.21(15), 5817–5826 (2011).
[CrossRef]

Yang, B.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett.96(15), 153305 (2010).
[CrossRef]

Yang, H.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater.22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Yang, S.-Y.

J.-T. Wu, S.-Y. Yang, W.-C. Deng, and W.-Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng.87(10), 1951–1954 (2010).
[CrossRef]

Ye, J.

J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012).
[CrossRef]

Yeh, Y.

Yeung, K.

W. Luk, K. Yeung, K. Tam, K. Ng, K. Kwok, C. Kwong, A. Ng, and A. Djurišić, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron.12(4), 557–561 (2011).
[CrossRef]

Yost, V. E.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett.94(23), 231121 (2009).
[CrossRef]

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Yu, H.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett.96(15), 153305 (2010).
[CrossRef]

Yu, J. S.

Yuan, C.-H.

Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).

Yuan, H.-C.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

Zhang, D.

J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012).
[CrossRef]

Zhang, J.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett.96(15), 153305 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).

W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009).
[CrossRef]

W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009).
[CrossRef]

Zhang, L.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).

Zhao, X.

J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012).
[CrossRef]

Zhou, W.

W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009).
[CrossRef]

Zhu, J.

J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, and X. Gao, “Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores,” ACS Appl. Mater. Interfaces4(10), 5678–5683 (2012).
[CrossRef] [PubMed]

Zhu, S.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett.96(15), 153305 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).

ACS Appl. Mater. Interfaces (1)

J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, and X. Gao, “Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores,” ACS Appl. Mater. Interfaces4(10), 5678–5683 (2012).
[CrossRef] [PubMed]

ACS Nano (1)

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Adv. Mater. (3)

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater.22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett.96(15), 153305 (2010).
[CrossRef]

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009).
[CrossRef]

M.-N. Lin, M.-T. Lin, C. Y. Liu, M. Lai, N. Liu, C. Peng, H. Wang, and Y. Wang, “Long-range ordered nanoaperture array with uniform diameter and interpore spacing,” Appl. Phys. Lett.87, 173116 (2005).
[CrossRef]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett.94(23), 231121 (2009).
[CrossRef]

H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett.99(18), 183107 (2011).
[CrossRef]

Chem. Mater. (1)

P.-S. Lee, O.-J. Lee, S.-K. Hwang, S.-H. Jung, S. E. Jee, and K.-H. Lee, “Vertically aligned nanopillar arrays with hard skins using anodic aluminum oxide for nano imprint lithography,” Chem. Mater.17(24), 6181–6185 (2005).
[CrossRef]

Energy Environ. Sci. (3)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
[CrossRef]

J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012).
[CrossRef]

H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci.6(6), 1929–1937 (2013).
[CrossRef]

IEEE Signal Process. Lett. (1)

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002).
[CrossRef]

J. Appl. Phys. (1)

Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).

J. Electrochem. Soc. (1)

T. Chow, P. Maciel, and G. Fanelli, “Reactive ion etching of silicon in CCl4 and HCl plasmas,” J. Electrochem. Soc.134(5), 1281–1286 (1987).
[CrossRef]

J. Mater. Chem. (2)

X. Li, L. Xue, and Y. Han, “Broadband antireflection of block copolymer/homopolymer blend films with gradient refractive index structures,” J. Mater. Chem.21(15), 5817–5826 (2011).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, C. Cho, and H. S. Lee, “Robustly nano-tailored honeycomb structure for high-throughput antireflection polymer films,” J. Mater. Chem.22(33), 17037–17043 (2012).
[CrossRef]

J. Opt. Soc. Am. (2)

Microelectron. Eng. (2)

W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009).
[CrossRef]

J.-T. Wu, S.-Y. Yang, W.-C. Deng, and W.-Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng.87(10), 1951–1954 (2010).
[CrossRef]

Nanoscale (1)

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale4(15), 4603–4610 (2012).
[CrossRef] [PubMed]

Nanotechnology (1)

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology19(20), 205301 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Nature (1)

P. Clapham and M. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Opt. Express (7)

J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express19(15), 14411–14419 (2011).
[CrossRef] [PubMed]

K.-Y. Chen, Y.-T. Chang, Y.-H. Ho, H.-Y. Lin, J.-H. Lee, and M.-K. Wei, “Emitter apodization dependent angular luminance enhancement of microlens-array film attached organic light-emitting devices,” Opt. Express18(4), 3238–3243 (2010).
[CrossRef] [PubMed]

H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express16(15), 11044–11051 (2008).
[CrossRef] [PubMed]

J. W. Leem, Y. Yeh, and J. S. Yu, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express20(4), 4056–4066 (2012).
[CrossRef] [PubMed]

Y.-H. Ho, C.-C. Liu, S.-W. Liu, H. Liang, C.-W. Chu, and P.-K. Wei, “Efficiency enhancement of flexible organic light-emitting devices by using antireflection nanopillars,” Opt. Express19(S3), A295–A302 (2011).
[CrossRef] [PubMed]

Y.-C. Lee, C.-C. Chang, and Y.-Y. Chou, “Experimental and simulation studies of anti-reflection sub-micron conical structures on a GaAs substrate,” Opt. Express21(S1), A36–A41 (2013).
[CrossRef] [PubMed]

Z. Wu, L. Wang, and Y. Qiu, “Contrast-enhancement in organic light-emitting diodes,” Opt. Express13(5), 1406–1411 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Org. Electron. (1)

W. Luk, K. Yeung, K. Tam, K. Ng, K. Kwok, C. Kwong, A. Ng, and A. Djurišić, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron.12(4), 557–561 (2011).
[CrossRef]

Science (1)

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Thin Solid Films (1)

L. Schirone, G. Sotgiu, and F. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films297(1–2), 296–298 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diagrams of fabrication process of graded-index antireflection nanopillars and its application in commercial OLED display panel.

Fig. 2
Fig. 2

Camera (a) and SEM images (b) of silicon template with nanoparticle-catalyzed etching.

Fig. 3
Fig. 3

(a) Binary SEM images of the proposed silicon template after nanoparticle-catalyzed etching (b) aperture ratio under different etching time (dashed line: exponential fitting curve).

Fig. 4
Fig. 4

Silicon template with concave nanostructures (left) and nanoimprinted polycarbonate AR film (right).

Fig. 5
Fig. 5

AFM images of the imprinted polycarbonate film by Si concave molds with the nanoparticle-catalyzed etching time of (a) 7 and (b) 9 minutes.

Fig. 6
Fig. 6

(a) Reflectance spectra of patterned thin film with different average height (b) average height and resulting AR effects in visible wavelength region by using silicon concave molds with different nanoparticle-catalyzed etching time.

Fig. 7
Fig. 7

Images of single color frame (a) and Lena standard (b) under dark ambient and luminous enhancement (c) of commercial OLED panel with and without polycarbonate AR film attachment.

Fig. 8
Fig. 8

Lena standard test images with and without graded-index AR thin film attachment under bright ambient condition.

Tables (1)

Tables Icon

Table 1 Image Quality Index of OLED Panel in Bright Ambient Condition

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q= σ xy σ x σ y × 2 x ¯ y ¯ ( x ¯ ) 2 + ( y ¯ ) 2 × 2 σ x σ y σ x 2 + σ y 2
CR= L on + L ambient L off + L ambient

Metrics