Abstract

An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt.19(17), 2991–2997 (1980).
    [CrossRef] [PubMed]
  2. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt.26(8), 1492–1499 (1987).
    [CrossRef] [PubMed]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  4. T. Wilson, Confocal Microscopy (Academic Press, 1990).
  5. A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010).
    [PubMed]
  6. R. Yadav, K. S. Lee, J. P. Rolland, J. M. Zavislan, J. V. Aquavella, and G. Yoon, “Micrometer axial resolution OCT for corneal imaging,” Biomed. Opt. Express2(11), 3037–3046 (2011).
    [CrossRef] [PubMed]
  7. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
    [CrossRef] [PubMed]
  8. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002).
    [CrossRef] [PubMed]
  9. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004).
    [CrossRef] [PubMed]
  10. W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
    [CrossRef] [PubMed]
  11. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  12. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett.31(9), 1268–1270 (2006).
    [CrossRef] [PubMed]
  13. Y. Zhang, S. Poonja, and A. Roorda, AOSLO: from Benchtop to Clinic, M. K. Giles, J. D. Gonglewski, and R. A. Carreras, eds. (2006), Vol. 6306, pp. 63060V1–63060V–11.
  14. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007).
    [CrossRef] [PubMed]
  15. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A24(5), 1305–1312 (2007).
    [CrossRef]
  16. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express14(16), 7144–7158 (2006).
    [CrossRef] [PubMed]
  17. N. M. Putnam, D. X. Hammer, Y. Zhang, D. Merino, and A. Roorda, “Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy,” Opt. Express18(24), 24902–24916 (2010).
    [CrossRef] [PubMed]
  18. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(6), 1757–1768 (2011).
    [CrossRef] [PubMed]
  19. R. F. Cooper, A. M. Dubis, A. Pavaskar, J. Rha, A. Dubra, and J. Carroll, “Spatial and temporal variation of rod photoreceptor reflectance in the human retina,” Biomed. Opt. Express2(9), 2577–2589 (2011).
    [CrossRef] [PubMed]
  20. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
    [CrossRef] [PubMed]
  21. D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(8), 2189–2201 (2011).
    [CrossRef] [PubMed]
  22. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13(12), 4792–4811 (2005).
    [CrossRef] [PubMed]
  23. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
    [CrossRef] [PubMed]
  24. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14(10), 4380–4394 (2006).
    [CrossRef] [PubMed]
  25. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express15(24), 16141–16160 (2007).
    [CrossRef]
  26. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A24(5), 1373–1383 (2007).
    [CrossRef] [PubMed]
  27. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008).
    [CrossRef] [PubMed]
  28. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011).
    [CrossRef] [PubMed]
  29. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express16(15), 11083–11094 (2008).
    [CrossRef] [PubMed]
  30. D. T. Miller, O. P. Kocaoglu, Q. Wang, and S. Lee, “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.)25(3), 321–330 (2011).
    [CrossRef] [PubMed]
  31. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express2(4), 748–763 (2011).
    [CrossRef] [PubMed]
  32. J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci.50(3), 1350–1359 (2008).
    [CrossRef] [PubMed]
  33. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express14(8), 3345–3353 (2006).
    [CrossRef] [PubMed]
  34. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett.33(1), 22–24 (2008).
    [CrossRef] [PubMed]
  35. M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express18(11), 11607–11621 (2010).
    [CrossRef] [PubMed]
  36. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express15(25), 16922–16932 (2007).
    [CrossRef] [PubMed]
  37. M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express18(13), 13935–13944 (2010).
    [CrossRef] [PubMed]
  38. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  39. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express15(17), 10832–10841 (2007).
    [CrossRef] [PubMed]
  40. M. Szkulmowski, M. Wojtkowski, P. Targowski, and A. Kowalczyk, “Spectral shaping and least square iterative deconvolution in spectral OCT,” in Biomedical Optics 2004 (International Society for Optics and Photonics, 2004), pp. 424–431.
  41. M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun.246(4-6), 569–578 (2005).
    [CrossRef]
  42. H. C. Hendargo, M. Zhao, N. Shepherd, and J. A. Izatt, “Synthetic wavelength based phase unwrapping in spectral domain optical coherence tomography,” Opt. Express17(7), 5039–5051 (2009).
    [CrossRef] [PubMed]
  43. P. L. Lin, A. T. T. Shen, R. Wang, L. An, P. Li, and T. Shen, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express2, 21–31 (2011).
  44. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  45. Y. Zhang, X. Wang, and J. Wang, “High-Speed Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO),” in ARVO (2010), p. 2311/A561.
  46. Y. Zhang, X. Wang, R. Myers, J. Alexander, T. Ye, A. Roorda, and P. Gamlin, “Broad-Spectrum Adaptive Optics Scanning Laser Ophthalmoscopy,” in IOVS (2011), p. 52:ARVO E–Abstract 5869.
  47. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express14(25), 12230–12242 (2006).
    [CrossRef] [PubMed]
  48. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13(2), 024008 (2008).
    [CrossRef] [PubMed]
  49. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A24(5), 1250–1265 (2007).
    [CrossRef] [PubMed]
  50. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
    [CrossRef] [PubMed]
  51. P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998).
    [CrossRef] [PubMed]
  52. M. D. Abramoff, P. J. Magalhães, and S. J. J. Ram, “Image processing with ImageJ,” Biophotonics International11, 36–43 (2004).
  53. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE5688, 145–151 (2005).
    [CrossRef]
  54. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express14(2), 487–497 (2006).
    [CrossRef] [PubMed]
  55. R. F. Spaide, H. Koizumi, M. C. Pozzoni, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
    [CrossRef] [PubMed]
  56. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
    [CrossRef] [PubMed]
  57. M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express2(9), 2690–2697 (2011).
    [CrossRef] [PubMed]
  58. R. F. Spaide and C. A. Curcio, “Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model,” Retina31(8), 1609–1619 (2011).
    [CrossRef] [PubMed]
  59. A. Panorgias, R. J. Zawadzki, A. G. Capps, A. A. Hunter, L. S. Morse, and J. S. Werner, “Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy,” Invest. Ophthalmol. Vis. Sci.54(6), 4372–4384 (2013).
    [CrossRef] [PubMed]
  60. R. F. Spaide, “Questioning Optical Coherence Tomography,” Ophthalmology119, 2203–2204 (2012).
  61. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
    [CrossRef] [PubMed]
  62. B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
    [CrossRef] [PubMed]

2013 (1)

A. Panorgias, R. J. Zawadzki, A. G. Capps, A. A. Hunter, L. S. Morse, and J. S. Werner, “Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy,” Invest. Ophthalmol. Vis. Sci.54(6), 4372–4384 (2013).
[CrossRef] [PubMed]

2012 (1)

R. F. Spaide, “Questioning Optical Coherence Tomography,” Ophthalmology119, 2203–2204 (2012).

2011 (11)

P. L. Lin, A. T. T. Shen, R. Wang, L. An, P. Li, and T. Shen, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express2, 21–31 (2011).

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express2(9), 2690–2697 (2011).
[CrossRef] [PubMed]

R. F. Spaide and C. A. Curcio, “Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model,” Retina31(8), 1609–1619 (2011).
[CrossRef] [PubMed]

R. Yadav, K. S. Lee, J. P. Rolland, J. M. Zavislan, J. V. Aquavella, and G. Yoon, “Micrometer axial resolution OCT for corneal imaging,” Biomed. Opt. Express2(11), 3037–3046 (2011).
[CrossRef] [PubMed]

A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(6), 1757–1768 (2011).
[CrossRef] [PubMed]

R. F. Cooper, A. M. Dubis, A. Pavaskar, J. Rha, A. Dubra, and J. Carroll, “Spatial and temporal variation of rod photoreceptor reflectance in the human retina,” Biomed. Opt. Express2(9), 2577–2589 (2011).
[CrossRef] [PubMed]

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
[CrossRef] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(8), 2189–2201 (2011).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011).
[CrossRef] [PubMed]

D. T. Miller, O. P. Kocaoglu, Q. Wang, and S. Lee, “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.)25(3), 321–330 (2011).
[CrossRef] [PubMed]

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express2(4), 748–763 (2011).
[CrossRef] [PubMed]

2010 (4)

2009 (1)

2008 (8)

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett.33(1), 22–24 (2008).
[CrossRef] [PubMed]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13(2), 024008 (2008).
[CrossRef] [PubMed]

R. F. Spaide, H. Koizumi, M. C. Pozzoni, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
[CrossRef] [PubMed]

E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express16(15), 11083–11094 (2008).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci.50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

2007 (7)

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express15(24), 16141–16160 (2007).
[CrossRef]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A24(5), 1373–1383 (2007).
[CrossRef] [PubMed]

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007).
[CrossRef] [PubMed]

D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A24(5), 1305–1312 (2007).
[CrossRef]

F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A24(5), 1250–1265 (2007).
[CrossRef] [PubMed]

F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express15(17), 10832–10841 (2007).
[CrossRef] [PubMed]

2006 (6)

2005 (4)

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13(12), 4792–4811 (2005).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE5688, 145–151 (2005).
[CrossRef]

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun.246(4-6), 569–578 (2005).
[CrossRef]

2004 (3)

2003 (1)

2002 (2)

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998).
[CrossRef] [PubMed]

1997 (1)

1992 (1)

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
[CrossRef] [PubMed]

1987 (1)

1980 (1)

Abramoff, M. D.

M. D. Abramoff, P. J. Magalhães, and S. J. J. Ram, “Image processing with ImageJ,” Biophotonics International11, 36–43 (2004).

Ahamd, K.

Ahnelt, P. K.

An, L.

P. L. Lin, A. T. T. Shen, R. Wang, L. An, P. Li, and T. Shen, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express2, 21–31 (2011).

Aquavella, J. V.

Arathorn, D. W.

Artal, P.

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13(2), 024008 (2008).
[CrossRef] [PubMed]

Bajraszewski, T.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun.246(4-6), 569–578 (2005).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Balderas-Mata, S.

Baumann, B.

Bedggood, P.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13(2), 024008 (2008).
[CrossRef] [PubMed]

Beg, M. F.

Bird, A. C.

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
[CrossRef] [PubMed]

Boppart, S. A.

Bornemann, J.

Bouma, B.

Bower, B. A.

Bradu, A.

Burns, S. A.

Cable, A.

Campbell, M.

Capps, A. G.

A. Panorgias, R. J. Zawadzki, A. G. Capps, A. A. Hunter, L. S. Morse, and J. S. Werner, “Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy,” Invest. Ophthalmol. Vis. Sci.54(6), 4372–4384 (2013).
[CrossRef] [PubMed]

Carroll, J.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, D. C.

Chen, T.

Chen, Y.

Choi, S.

Choi, S. S.

Cooper, R. F.

Curcio, C. A.

R. F. Spaide and C. A. Curcio, “Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model,” Retina31(8), 1609–1619 (2011).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
[CrossRef] [PubMed]

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13(2), 024008 (2008).
[CrossRef] [PubMed]

Dainty, C.

de Boer, J.

Delori, F. C.

Derby, J. C.

Donnelly Iii, W.

Drexler, W.

Dubis, A. M.

Dubra, A.

Duncan, J. L.

Elsner, A. E.

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Evans, J. W.

Fercher, A.

Fercher, A. F.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Ferguson, D.

Ferguson, R. D.

Fernández, E. J.

Fitzke, F. W.

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Först, M.

Fujimoto, J. G.

Gao, W.

Gee, B. P.

Gorczynska, I.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun.246(4-6), 569–578 (2005).
[CrossRef]

Götzinger, E.

Gray, D. C.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grieve, K.

Grychtol, P.

Hammer, D. X.

Hebert, T.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hendargo, H. C.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
[CrossRef] [PubMed]

Herde, A. E.

Hermann, B.

Hermes, B.

Hitzenberger, C.

Hitzenberger, C. K.

Hofer, B.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hughes, G. W.

Hunter, A. A.

A. Panorgias, R. J. Zawadzki, A. G. Capps, A. A. Hunter, L. S. Morse, and J. S. Werner, “Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy,” Invest. Ophthalmol. Vis. Sci.54(6), 4372–4384 (2013).
[CrossRef] [PubMed]

Iftimia, N.

Ippen, E. P.

Izatt, J. A.

Jian, Y.

Jiang, J.

Jones, S.

Jones, S. M.

Jonnal, R.

Jonnal, R. S.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
[CrossRef] [PubMed]

Kärtner, F. X.

Kim, D. Y.

Kocaoglu, O. P.

Koizumi, H.

R. F. Spaide, H. Koizumi, M. C. Pozzoni, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun.246(4-6), 569–578 (2005).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Kray, S.

Kurz, H.

Laut, S.

Lebed, E.

Lee, K. S.

Lee, S.

Leitgeb, R.

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Leitgeb, R. A.

Li, P.

P. L. Lin, A. T. T. Shen, R. Wang, L. An, P. Li, and T. Shen, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express2, 21–31 (2011).

Li, X. D.

Liang, J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lin, P. L.

P. L. Lin, A. T. T. Shen, R. Wang, L. An, P. Li, and T. Shen, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express2, 21–31 (2011).

Lue, N.

Mackenzie, P. J.

Magalhães, P. J.

M. D. Abramoff, P. J. Magalhães, and S. J. J. Ram, “Image processing with ImageJ,” Biophotonics International11, 36–43 (2004).

Marshall, J.

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
[CrossRef] [PubMed]

Merigan, W.

Merigan, W. H.

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci.50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

Merino, D.

Metha, A.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13(2), 024008 (2008).
[CrossRef] [PubMed]

Miller, D.

Miller, D. T.

Morgan, J. I. W.

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci.50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

Morgner, U.

Morse, L. S.

A. Panorgias, R. J. Zawadzki, A. G. Capps, A. A. Hunter, L. S. Morse, and J. S. Werner, “Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy,” Invest. Ophthalmol. Vis. Sci.54(6), 4372–4384 (2013).
[CrossRef] [PubMed]

Mujat, M.

Nassif, N.

Norris, J. L.

Oliver, S. S.

Olivier, S.

Olivier, S. S.

Panorgias, A.

A. Panorgias, R. J. Zawadzki, A. G. Capps, A. A. Hunter, L. S. Morse, and J. S. Werner, “Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy,” Invest. Ophthalmol. Vis. Sci.54(6), 4372–4384 (2013).
[CrossRef] [PubMed]

Park, B.

Parker, A.

Patel, A. H.

Pavaskar, A.

Pierce, M.

Pilli, S.

Pircher, M.

Pitris, C.

Podoleanu, A. G.

Pomerantzeff, O.

Poonja, S.

Porter, J.

Potsaid, B.

Považay, B.

Pozonni, M. C.

R. F. Spaide, H. Koizumi, M. C. Pozzoni, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
[CrossRef] [PubMed]

Pozzoni, M. C.

R. F. Spaide, H. Koizumi, M. C. Pozzoni, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
[CrossRef] [PubMed]

Prieto, P. M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Putnam, N. M.

Queener, H.

Radzewicz, C.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun.246(4-6), 569–578 (2005).
[CrossRef]

Ram, S. J. J.

M. D. Abramoff, P. J. Magalhães, and S. J. J. Ram, “Image processing with ImageJ,” Biophotonics International11, 36–43 (2004).

Reinholz, F.

Rha, J.

Rolland, J. P.

Romero-Borja, F.

Roorda, A.

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(8), 2189–2201 (2011).
[CrossRef] [PubMed]

N. M. Putnam, D. X. Hammer, Y. Zhang, D. Merino, and A. Roorda, “Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy,” Opt. Express18(24), 24902–24916 (2010).
[CrossRef] [PubMed]

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010).
[PubMed]

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett.31(9), 1268–1270 (2006).
[CrossRef] [PubMed]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express14(2), 487–497 (2006).
[CrossRef] [PubMed]

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express14(25), 12230–12242 (2006).
[CrossRef] [PubMed]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE5688, 145–151 (2005).
[CrossRef]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002).
[CrossRef] [PubMed]

Ruttimann, U. E.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998).
[CrossRef] [PubMed]

Sarunic, M. V.

Sattmann, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shen, A. T. T.

P. L. Lin, A. T. T. Shen, R. Wang, L. An, P. Li, and T. Shen, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express2, 21–31 (2011).

Shen, T.

P. L. Lin, A. T. T. Shen, R. Wang, L. An, P. Li, and T. Shen, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express2, 21–31 (2011).

Shepherd, N.

Silva, D. A.

Sliney, D. H.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
[CrossRef] [PubMed]

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13(2), 024008 (2008).
[CrossRef] [PubMed]

Spaide, R. F.

R. F. Spaide, “Questioning Optical Coherence Tomography,” Ophthalmology119, 2203–2204 (2012).

R. F. Spaide and C. A. Curcio, “Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model,” Retina31(8), 1609–1619 (2011).
[CrossRef] [PubMed]

R. F. Spaide, H. Koizumi, M. C. Pozzoni, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
[CrossRef] [PubMed]

Spöler, F.

Srinivasan, V. J.

Stevenson, S. B.

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE5688, 145–151 (2005).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sulai, Y.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowski, M.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun.246(4-6), 569–578 (2005).
[CrossRef]

Targowski, P.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun.246(4-6), 569–578 (2005).
[CrossRef]

Tearney, G.

Thévenaz, P.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998).
[CrossRef] [PubMed]

Tiruveedhula, P.

Tumbar, R.

Twietmeyer, T. H.

Unser, M.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998).
[CrossRef] [PubMed]

Unterhuber, A.

Vogel, C. R.

Wang, Q.

Wang, R.

P. L. Lin, A. T. T. Shen, R. Wang, L. An, P. Li, and T. Shen, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express2, 21–31 (2011).

Wasilewski, W.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun.246(4-6), 569–578 (2005).
[CrossRef]

Webb, R. H.

Werner, J. S.

A. Panorgias, R. J. Zawadzki, A. G. Capps, A. A. Hunter, L. S. Morse, and J. S. Werner, “Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy,” Invest. Ophthalmol. Vis. Sci.54(6), 4372–4384 (2013).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011).
[CrossRef] [PubMed]

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett.33(1), 22–24 (2008).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A24(5), 1373–1383 (2007).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14(10), 4380–4394 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Williams, D. R.

Wojtkowski, M.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun.246(4-6), 569–578 (2005).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Wolfe, R.

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci.50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

Wolfing, J. I.

Woon, W. H.

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
[CrossRef] [PubMed]

Yadav, R.

Yoon, G.

Young, M.

Yun, S. H.

Zavislan, J. M.

Zawadzki, R. J.

A. Panorgias, R. J. Zawadzki, A. G. Capps, A. A. Hunter, L. S. Morse, and J. S. Werner, “Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy,” Invest. Ophthalmol. Vis. Sci.54(6), 4372–4384 (2013).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett.33(1), 22–24 (2008).
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A24(5), 1373–1383 (2007).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14(10), 4380–4394 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Zhang, Y.

N. M. Putnam, D. X. Hammer, Y. Zhang, D. Merino, and A. Roorda, “Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy,” Opt. Express18(24), 24902–24916 (2010).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express15(24), 16141–16160 (2007).
[CrossRef]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14(10), 4380–4394 (2006).
[CrossRef] [PubMed]

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett.31(9), 1268–1270 (2006).
[CrossRef] [PubMed]

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express14(25), 12230–12242 (2006).
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13(12), 4792–4811 (2005).
[CrossRef] [PubMed]

Zhao, M.

Am. J. Ophthalmol. (1)

R. F. Spaide, H. Koizumi, M. C. Pozzoni, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (9)

R. Yadav, K. S. Lee, J. P. Rolland, J. M. Zavislan, J. V. Aquavella, and G. Yoon, “Micrometer axial resolution OCT for corneal imaging,” Biomed. Opt. Express2(11), 3037–3046 (2011).
[CrossRef] [PubMed]

A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(6), 1757–1768 (2011).
[CrossRef] [PubMed]

R. F. Cooper, A. M. Dubis, A. Pavaskar, J. Rha, A. Dubra, and J. Carroll, “Spatial and temporal variation of rod photoreceptor reflectance in the human retina,” Biomed. Opt. Express2(9), 2577–2589 (2011).
[CrossRef] [PubMed]

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
[CrossRef] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(8), 2189–2201 (2011).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011).
[CrossRef] [PubMed]

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express2(4), 748–763 (2011).
[CrossRef] [PubMed]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express2(9), 2690–2697 (2011).
[CrossRef] [PubMed]

P. L. Lin, A. T. T. Shen, R. Wang, L. An, P. Li, and T. Shen, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express2, 21–31 (2011).

Biophotonics International (1)

M. D. Abramoff, P. J. Magalhães, and S. J. J. Ram, “Image processing with ImageJ,” Biophotonics International11, 36–43 (2004).

Br. J. Ophthalmol. (1)

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
[CrossRef] [PubMed]

Eye (Lond.) (1)

D. T. Miller, O. P. Kocaoglu, Q. Wang, and S. Lee, “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.)25(3), 321–330 (2011).
[CrossRef] [PubMed]

IEEE Trans. Image Process. (1)

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

A. Panorgias, R. J. Zawadzki, A. G. Capps, A. A. Hunter, L. S. Morse, and J. S. Werner, “Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy,” Invest. Ophthalmol. Vis. Sci.54(6), 4372–4384 (2013).
[CrossRef] [PubMed]

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci.50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13(2), 024008 (2008).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (5)

Ophthalmology (1)

R. F. Spaide, “Questioning Optical Coherence Tomography,” Ophthalmology119, 2203–2204 (2012).

Opt. Commun. (1)

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun.246(4-6), 569–578 (2005).
[CrossRef]

Opt. Express (20)

H. C. Hendargo, M. Zhao, N. Shepherd, and J. A. Izatt, “Synthetic wavelength based phase unwrapping in spectral domain optical coherence tomography,” Opt. Express17(7), 5039–5051 (2009).
[CrossRef] [PubMed]

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express18(11), 11607–11621 (2010).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express18(13), 13935–13944 (2010).
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express15(17), 10832–10841 (2007).
[CrossRef] [PubMed]

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express14(25), 12230–12242 (2006).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
[CrossRef] [PubMed]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express14(2), 487–497 (2006).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express14(16), 7144–7158 (2006).
[CrossRef] [PubMed]

N. M. Putnam, D. X. Hammer, Y. Zhang, D. Merino, and A. Roorda, “Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy,” Opt. Express18(24), 24902–24916 (2010).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express16(15), 11083–11094 (2008).
[CrossRef] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express14(8), 3345–3353 (2006).
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13(12), 4792–4811 (2005).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14(10), 4380–4394 (2006).
[CrossRef] [PubMed]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express15(24), 16141–16160 (2007).
[CrossRef]

Opt. Lett. (4)

Optom. Vis. Sci. (1)

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010).
[PubMed]

Proc. SPIE (1)

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE5688, 145–151 (2005).
[CrossRef]

Prog. Retin. Eye Res. (1)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
[CrossRef] [PubMed]

Retina (1)

R. F. Spaide and C. A. Curcio, “Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model,” Retina31(8), 1609–1619 (2011).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (5)

T. Wilson, Confocal Microscopy (Academic Press, 1990).

Y. Zhang, S. Poonja, and A. Roorda, AOSLO: from Benchtop to Clinic, M. K. Giles, J. D. Gonglewski, and R. A. Carreras, eds. (2006), Vol. 6306, pp. 63060V1–63060V–11.

M. Szkulmowski, M. Wojtkowski, P. Targowski, and A. Kowalczyk, “Spectral shaping and least square iterative deconvolution in spectral OCT,” in Biomedical Optics 2004 (International Society for Optics and Photonics, 2004), pp. 424–431.

Y. Zhang, X. Wang, and J. Wang, “High-Speed Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO),” in ARVO (2010), p. 2311/A561.

Y. Zhang, X. Wang, R. Myers, J. Alexander, T. Ye, A. Roorda, and P. Gamlin, “Broad-Spectrum Adaptive Optics Scanning Laser Ophthalmoscopy,” in IOVS (2011), p. 52:ARVO E–Abstract 5869.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic diagram of the presented system. The parts highlighted in blue were added to the system to facilitate OCT imaging. L1-8; lenses, S1-8 Spherical mirrors, DC1-3; dichroic mirrors, BS; beamsplitter, HS; Horizontal scanner, VS; vertical scanner, DM; deformable mirror, BF; bandpass filter, WS; wavefront sensor, CP1 and 2; confocal pinholes, FM; flip mirror, M1-3; plane mirrors.

Fig. 2
Fig. 2

(a). Spectra obtained from averaging all 512 lines used to generate an image. Figure 2(b) Normalized coherence profiles from an average of 512 A-scans. For both graphs; black- raw spectrum, red- window method, green- function method, blue- combined method. In this case, the coherence profiles of the function and combined methods are almost identical and very close to an ideal Gaussian shape.

Fig. 3
Fig. 3

Retinal images taken a 4° nasal to the fovea center from a subject (#1) in good retinal health. The images are from the same B-scans and have been processed identically, but the image on the right was spectrally shaped and the image on the left was not. The red and yellow arrows point to features discussed in the main text. The images are in logarithmic grey scale. These images were taken with the outer retina closest to zero optical path difference, minimizing the sensitivity loss to the choroid and inner retina due to roll-off [55]. The images were taken at a frame rate of 50 Hz and are average of 5 frames.

Fig. 4
Fig. 4

Examples of AO-OCT retinal images with the adaptive optics switched off (left) and on (right). The image was taken at 4° temporal eccentricity to the fovea centre in subject (#2) who is in good retinal health. The frame rate is 100 Hz, and 5 frames are averaged in both images. The images have a linear grey scale.

Fig. 5
Fig. 5

AO-OCT B-scan of a healthy retina (subject #3). 2° nasal from the central fovea with the focus at the photoreceptors. The image is displayed with a linear grey scale. The frame rate was 50 Hz and this is an average of 7 images. The scale, indicated by the bar has a 1:1 vertical/horizontal ratio and has been corrected for the refractive index of retinal tissue (assumed to be n = 1.33). The marked layers are RNFL; retinal nerve fiber layer, GCL; ganglion cell layer, IPL; inner plexiform layer, INL; inner nuclear layer, OPL; outer plexiform layer, ONL; outer nuclear layer, ELM; external limiting membrane, IS/OS: inner segment/outer segment junction; EZ: ellipsoid zone; OST; outer segment tips, RPE-BrM; retinal pigment epithelium/Bruch’s membrane complex, Ch; Choroid. The IS/OS and the OST are also claimed as the EZ (ellipsoidal zone) and the IDZ (interdigitation zone), respectively.

Fig. 6
Fig. 6

AO-SLO thumbnails (middle) taken from an AO-SLO montage (top) and AO-OCT (bottom) images taken at different retinal eccentricities from subject #3 in good retinal health. The bright spots in the AO-SLO images are cone photoreceptors. Each AO-SLO image is a registered set of 20 AO-corrected images. All images have been corrected for distortions due to eye movements and the nonlinear scan [54]. The arrows on the AO-SLO images indicate the position and direction of the OCT scan, the arrow direction corresponds to right to left in the OCT images. The green squares on the SLO montage show where the enlarged SLO images are located.

Fig. 7
Fig. 7

Images of a large druse at the fovea. Left panel is the AO-SLO image, showing the retina overlying the drusen with significantly reduced reflectivity. Outside the dark area, the contiguous reflective spots are cone photoreceptors (Ph). The red arrow marks where the AO-OCT B scan was taken. The arrow direction shows the right to left direction of the AO-OCT image (right panel). The AO-OCT image has a 1° field of view. The label Ph shows preserved photoreceptors and the label DrC shows the core of the druse in both the SLO and OCT images.

Tables (3)

Tables Icon

Table 1 The FWHM, e−2 width and relative SNR of the three methods

Tables Icon

Table 2 Measurement of the cone spacing from OCT images

Tables Icon

Table 3 Measurement of the IS/OS (EZ) thickness

Metrics