Abstract

Characteristics and nature of close surface defects existing in fused silica polished optical surfaces were explored. Samples were deliberately scratched using a modified polishing process in presence of different fluorescent dyes. Various techniques including Epi-fluorescence Laser Scanning Mode (ELSM) or STimulated Emission Depletion (STED) confocal microscopy were used to measure and quantify scratches that are sometimes embedded under the polished layer. We show using a non-destructive technique that depth of the modified region extends far below the surface. Moreover cracks of 120 nm width can be present ten micrometers below the surface.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Beilby, “Surface flow in crystalline solids under mechanical disturbance,” Proc. R. Soc. Lond. 72(477-486), 218–225 (1903).
    [CrossRef]
  2. W. Klemm and A. Smekal, “Über den Grundvorgang des Polierens von Gläsern,” Naturwissenschaften 29(45-46), 688–690 (1941).
    [CrossRef]
  3. L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120(1-3), 152–171 (1990).
    [CrossRef]
  4. D. W. Camp, M. Kozlowski, L. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
    [CrossRef]
  5. M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
    [CrossRef]
  6. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
    [CrossRef]
  7. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
    [CrossRef] [PubMed]
  8. J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
    [CrossRef]
  9. J. Wang, Y. Li, H. Jinghua, X. Qiao, and Y. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).
  10. F. Rainer, R. K. Dickson, R. T. Jennings, J. F. Kimmons, S. M. Maricle, R. P. Mouser, S. Schwartz, and C. L. Weinzapfel, “Development of practical damage mapping and inspection systems,” Proc. SPIE 3492, 556–563 (1999).
    [CrossRef]
  11. T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
    [CrossRef]
  12. W. B. Williams, B. A. Mullany, W. C. Parker, P. J. Moyer, and M. H. Randles, “Using quantum dots to tag subsurface damage in lapped and polished glass samples,” Appl. Opt. 48(27), 5155–5163 (2009).
    [CrossRef] [PubMed]
  13. T. Suratwala, P. Miller, M. Feit, and J. Menapace, “Scratch forensics,” Opt. Photonics News 09, 12–15 (2008).
  14. W. S. Rasband, “ImageJ,” http://imagej.nih.gov/ij/ .
  15. S. Sternberg, “Biomedical image processing,” IEEE Computer 16(1), 22–34 (1983).
    [CrossRef]
  16. J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
    [CrossRef] [PubMed]
  17. LEICA TCS SP2 confocal microscope, http://www.leica-microsystems.com/products/confocal-microscopes/leica-tcs-sp8-configurable-confocal/ .
  18. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  19. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
    [CrossRef]
  20. D. C. Harris, “History of magnetorheological finishing,” Proc. SPIE 8016, 1–22 (2011).
    [CrossRef]
  21. W. Kordonski and S. Gorodkin, “Material removal in magnetorheological finishing of optics,” Appl. Opt. 50(14), 1984–1994 (2011).
    [CrossRef] [PubMed]
  22. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
    [CrossRef] [PubMed]
  23. H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
    [CrossRef]
  24. H. Bercegol and P. Grua, “Fracture related initiation and growth of surface laser damage in fused silica,” Proc. SPIE 7132, 1–10 (2008).
    [CrossRef]

2011 (3)

J. Wang, Y. Li, H. Jinghua, X. Qiao, and Y. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

D. C. Harris, “History of magnetorheological finishing,” Proc. SPIE 8016, 1–22 (2011).
[CrossRef]

W. Kordonski and S. Gorodkin, “Material removal in magnetorheological finishing of optics,” Appl. Opt. 50(14), 1984–1994 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (2)

2008 (4)

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[CrossRef]

T. Suratwala, P. Miller, M. Feit, and J. Menapace, “Scratch forensics,” Opt. Photonics News 09, 12–15 (2008).

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

H. Bercegol and P. Grua, “Fracture related initiation and growth of surface laser damage in fused silica,” Proc. SPIE 7132, 1–10 (2008).
[CrossRef]

2007 (1)

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
[CrossRef]

2006 (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[CrossRef]

2004 (1)

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[CrossRef]

2001 (1)

1999 (1)

F. Rainer, R. K. Dickson, R. T. Jennings, J. F. Kimmons, S. M. Maricle, R. P. Mouser, S. Schwartz, and C. L. Weinzapfel, “Development of practical damage mapping and inspection systems,” Proc. SPIE 3492, 556–563 (1999).
[CrossRef]

1998 (2)

D. W. Camp, M. Kozlowski, L. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

1994 (1)

1990 (1)

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120(1-3), 152–171 (1990).
[CrossRef]

1983 (1)

S. Sternberg, “Biomedical image processing,” IEEE Computer 16(1), 22–34 (1983).
[CrossRef]

1941 (1)

W. Klemm and A. Smekal, “Über den Grundvorgang des Polierens von Gläsern,” Naturwissenschaften 29(45-46), 688–690 (1941).
[CrossRef]

1903 (1)

G. T. Beilby, “Surface flow in crystalline solids under mechanical disturbance,” Proc. R. Soc. Lond. 72(477-486), 218–225 (1903).
[CrossRef]

Ambard, C.

J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
[CrossRef] [PubMed]

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Beilby, G. T.

G. T. Beilby, “Surface flow in crystalline solids under mechanical disturbance,” Proc. R. Soc. Lond. 72(477-486), 218–225 (1903).
[CrossRef]

Bercegol, H.

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

H. Bercegol and P. Grua, “Fracture related initiation and growth of surface laser damage in fused silica,” Proc. SPIE 7132, 1–10 (2008).
[CrossRef]

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
[CrossRef]

Bude, J. D.

Camp, D.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Camp, D. W.

D. W. Camp, M. Kozlowski, L. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Carr, J.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Chase, L. L.

Cook, L. M.

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120(1-3), 152–171 (1990).
[CrossRef]

Cormont, P.

J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
[CrossRef] [PubMed]

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Davis, P.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[CrossRef]

Destribats, J.

Dickson, R. K.

F. Rainer, R. K. Dickson, R. T. Jennings, J. F. Kimmons, S. M. Maricle, R. P. Mouser, S. Schwartz, and C. L. Weinzapfel, “Development of practical damage mapping and inspection systems,” Proc. SPIE 3492, 556–563 (1999).
[CrossRef]

Dovik, M.

D. W. Camp, M. Kozlowski, L. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Feit, M.

T. Suratwala, P. Miller, M. Feit, and J. Menapace, “Scratch forensics,” Opt. Photonics News 09, 12–15 (2008).

Feit, M. D.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[CrossRef]

Génin, F. Y.

Gorodkin, S.

Grua, P.

H. Bercegol and P. Grua, “Fracture related initiation and growth of surface laser damage in fused silica,” Proc. SPIE 7132, 1–10 (2008).
[CrossRef]

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
[CrossRef]

Guo, Y.

J. Wang, Y. Li, H. Jinghua, X. Qiao, and Y. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

Harris, D. C.

D. C. Harris, “History of magnetorheological finishing,” Proc. SPIE 8016, 1–22 (2011).
[CrossRef]

Hébert, D.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
[CrossRef]

Hell, S. W.

Hutcheon, I.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Jennings, R. T.

F. Rainer, R. K. Dickson, R. T. Jennings, J. F. Kimmons, S. M. Maricle, R. P. Mouser, S. Schwartz, and C. L. Weinzapfel, “Development of practical damage mapping and inspection systems,” Proc. SPIE 3492, 556–563 (1999).
[CrossRef]

Jinghua, H.

J. Wang, Y. Li, H. Jinghua, X. Qiao, and Y. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

Kimmons, J. F.

F. Rainer, R. K. Dickson, R. T. Jennings, J. F. Kimmons, S. M. Maricle, R. P. Mouser, S. Schwartz, and C. L. Weinzapfel, “Development of practical damage mapping and inspection systems,” Proc. SPIE 3492, 556–563 (1999).
[CrossRef]

Klemm, W.

W. Klemm and A. Smekal, “Über den Grundvorgang des Polierens von Gläsern,” Naturwissenschaften 29(45-46), 688–690 (1941).
[CrossRef]

Kordonski, W.

Kozlowski, M.

D. W. Camp, M. Kozlowski, L. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Kozlowski, M. R.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Lamaignere, L.

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Laurence, T. A.

Legros, P.

Li, Y.

J. Wang, Y. Li, H. Jinghua, X. Qiao, and Y. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

Maricle, S. M.

F. Rainer, R. K. Dickson, R. T. Jennings, J. F. Kimmons, S. M. Maricle, R. P. Mouser, S. Schwartz, and C. L. Weinzapfel, “Development of practical damage mapping and inspection systems,” Proc. SPIE 3492, 556–563 (1999).
[CrossRef]

Menapace, J.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. Suratwala, P. Miller, M. Feit, and J. Menapace, “Scratch forensics,” Opt. Photonics News 09, 12–15 (2008).

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[CrossRef]

Miller, P.

T. Suratwala, P. Miller, M. Feit, and J. Menapace, “Scratch forensics,” Opt. Photonics News 09, 12–15 (2008).

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[CrossRef]

Miller, P. E.

Morreeuw, J. P.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
[CrossRef]

Mouser, R. P.

F. Rainer, R. K. Dickson, R. T. Jennings, J. F. Kimmons, S. M. Maricle, R. P. Mouser, S. Schwartz, and C. L. Weinzapfel, “Development of practical damage mapping and inspection systems,” Proc. SPIE 3492, 556–563 (1999).
[CrossRef]

Moyer, P. J.

Mullany, B. A.

Neauport, J.

J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
[CrossRef] [PubMed]

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Nichols, M.

D. W. Camp, M. Kozlowski, L. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Parker, W. C.

Pilon, F.

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Pistor, T. V.

Qiao, X.

J. Wang, Y. Li, H. Jinghua, X. Qiao, and Y. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

Raether, R.

D. W. Camp, M. Kozlowski, L. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Rainer, F.

F. Rainer, R. K. Dickson, R. T. Jennings, J. F. Kimmons, S. M. Maricle, R. P. Mouser, S. Schwartz, and C. L. Weinzapfel, “Development of practical damage mapping and inspection systems,” Proc. SPIE 3492, 556–563 (1999).
[CrossRef]

Randles, M. H.

Rubenchik, A. M.

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[CrossRef]

Salleo, A.

Schwartz, S.

F. Rainer, R. K. Dickson, R. T. Jennings, J. F. Kimmons, S. M. Maricle, R. P. Mouser, S. Schwartz, and C. L. Weinzapfel, “Development of practical damage mapping and inspection systems,” Proc. SPIE 3492, 556–563 (1999).
[CrossRef]

Sheehan, L.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

D. W. Camp, M. Kozlowski, L. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Shen, N.

Smekal, A.

W. Klemm and A. Smekal, “Über den Grundvorgang des Polierens von Gläsern,” Naturwissenschaften 29(45-46), 688–690 (1941).
[CrossRef]

Steele, R.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[CrossRef]

Steele, W. A.

Sternberg, S.

S. Sternberg, “Biomedical image processing,” IEEE Computer 16(1), 22–34 (1983).
[CrossRef]

Suratwala, T.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[CrossRef]

T. Suratwala, P. Miller, M. Feit, and J. Menapace, “Scratch forensics,” Opt. Photonics News 09, 12–15 (2008).

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[CrossRef]

Suratwala, T. I.

Thomas, I.

D. W. Camp, M. Kozlowski, L. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Torres, R.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[CrossRef]

Wang, J.

J. Wang, Y. Li, H. Jinghua, X. Qiao, and Y. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

Weinzapfel, C. L.

F. Rainer, R. K. Dickson, R. T. Jennings, J. F. Kimmons, S. M. Maricle, R. P. Mouser, S. Schwartz, and C. L. Weinzapfel, “Development of practical damage mapping and inspection systems,” Proc. SPIE 3492, 556–563 (1999).
[CrossRef]

Wichmann, J.

Williams, W. B.

Wong, L.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[CrossRef]

Wong, L. L.

Yan, M.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Appl. Opt. (2)

IEEE Computer (1)

S. Sternberg, “Biomedical image processing,” IEEE Computer 16(1), 22–34 (1983).
[CrossRef]

J. Eur. Opt. Soc. (1)

J. Wang, Y. Li, H. Jinghua, X. Qiao, and Y. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

J. Non-Cryst. Solids (3)

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[CrossRef]

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120(1-3), 152–171 (1990).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Naturwissenschaften (1)

W. Klemm and A. Smekal, “Über den Grundvorgang des Polierens von Gläsern,” Naturwissenschaften 29(45-46), 688–690 (1941).
[CrossRef]

Opt. Commun. (1)

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Photonics News (1)

T. Suratwala, P. Miller, M. Feit, and J. Menapace, “Scratch forensics,” Opt. Photonics News 09, 12–15 (2008).

Proc. R. Soc. Lond. (1)

G. T. Beilby, “Surface flow in crystalline solids under mechanical disturbance,” Proc. R. Soc. Lond. 72(477-486), 218–225 (1903).
[CrossRef]

Proc. SPIE (7)

D. W. Camp, M. Kozlowski, L. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[CrossRef]

F. Rainer, R. K. Dickson, R. T. Jennings, J. F. Kimmons, S. M. Maricle, R. P. Mouser, S. Schwartz, and C. L. Weinzapfel, “Development of practical damage mapping and inspection systems,” Proc. SPIE 3492, 556–563 (1999).
[CrossRef]

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 1–12 (2007).
[CrossRef]

H. Bercegol and P. Grua, “Fracture related initiation and growth of surface laser damage in fused silica,” Proc. SPIE 7132, 1–10 (2008).
[CrossRef]

D. C. Harris, “History of magnetorheological finishing,” Proc. SPIE 8016, 1–22 (2011).
[CrossRef]

Other (2)

W. S. Rasband, “ImageJ,” http://imagej.nih.gov/ij/ .

LEICA TCS SP2 confocal microscope, http://www.leica-microsystems.com/products/confocal-microscopes/leica-tcs-sp8-configurable-confocal/ .

Supplementary Material (1)

» Media 1: MOV (13884 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic structure of the fused silica interface after polishing.

Fig. 2
Fig. 2

Schematic representation of the experimental method used for the production of polishing-like scratches on sample surfaces.

Fig. 3
Fig. 3

Typical scratch created by the scratching process.

Fig. 4
Fig. 4

Description of the image post-treatment steps using ImageJ.

Fig. 5
Fig. 5

Scratch observed in reflection (black and white scale) and ELSM mode with Lucifer Yellow tagging (yellow scale). Top view (central), side view from left (right) and side view from top (bottom) – All stacks represented.

Fig. 6
Fig. 6

Subsurface defect observed in reflection (black and white scale) and ELSM mode with Lucifer Yellow tagging (yellow scale). Top view (central), side view from left (right) and side view from top (bottom) – All stacks represented.

Fig. 7
Fig. 7

ToF-SIMS profile obtained on a polished sample. A 50 to 75 nm polished layer is observed.

Fig. 8
Fig. 8

Correlation between mean crack depth (d) and crack width (W). Best linear fit is shown in red.

Fig. 9
Fig. 9

Evolution of the crack obscuration during iterative material removal. The inserts correspond to DMS images of the initial state and after 3 µm and 12 µm material removal. Light HF wet etch was performed before DMS.

Fig. 10
Fig. 10

ELSM (left) and STED (right) mode confocal imaging of subsurface fractures, 3 µm below the surface.

Fig. 11
Fig. 11

Measurement of a subsurface fracture width on an isolated fracture (Media 1) at about 2.5 µm below the surface (a) – X-profile of crack width estimated in ELSM (red circles) and in STED mode (black rectangles) at the pointed location (arrow in (a)) (b).

Tables (1)

Tables Icon

Table 1 Characteristics of methods used for subsurface defects measurements.

Metrics