Abstract

Intensified microwave coupled by a loop antenna (diameter of 3 mm) has been employed to enhance the laser-induced breakdown spectroscopy (LIBS) emission. In this method, a laser plasma was induced on Gd2O3 sample at a reduced pressure by focusing a pulsed Nd:YAG laser (532 nm, 10 ns, 5 mJ) at a local point, at which electromagnetic field was produced by introducing microwave radiation using loop antenna. The plasma emission was significantly enhanced by absorbing the microwave radiation, resulting in high-temperature plasma and long-lifetime plasma emission. By using this method, the enhancement of Gd lines was up to 32 times, depending upon the emission lines observed. A linear calibration curve of Ca contained in the Gd2O3 sample was made. The detection limit of Ca was approximately 2 mg/kg. This present method is very useful for identification of trace elements in nuclear fuel and radioactive materials.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski, R. W. Solarz, and J. A. Paisner, Laser Spectroscopy and Its Applications, 1st ed. (Marcel Dekker, 1987).
  2. S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem.72(9), 2087–2092 (2000).
    [CrossRef] [PubMed]
  3. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: A review of the experimental approaches,” Spectrochim. Acta, B At. Spectrosc.57(7), 1115–1130 (2002).
    [CrossRef]
  4. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Recent trends and the future of laser induced plasma spectroscopy,” Trends Anal. Chem.17(8–9), 453–461 (1998).
    [CrossRef]
  5. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  6. A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy (Cambridge University, 2006).
  7. D. A. Cremers, J. E. Barefield, and A. C. Koskelo, “Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber optic cable,” Appl. Spectrosc.49(6), 857–860 (1995).
    [CrossRef]
  8. L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta B At. Spectrosc.57(7), 1109–1113 (2002).
    [CrossRef]
  9. V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B At. Spectrosc.61(9), 999–1014 (2006).
    [CrossRef]
  10. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc.45(9), 1419–1423 (1991).
    [CrossRef]
  11. R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D28(10), 2181–2187 (1995).
    [CrossRef]
  12. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express15(20), 12905–12915 (2007).
    [CrossRef] [PubMed]
  13. X. Liu, S. Sun, X. Wang, Z. Liu, Q. Liu, P. Ding, Z. Guo, and B. Hu, “Effect of laser pulse energy on orthogonal double femtosecond pulse laser-induced breakdown spectroscopy,” Opt. Express21(S4Suppl 4), A704–A713 (2013).
    [CrossRef] [PubMed]
  14. R. Sanginés and H. Sobral, “Time resolved study of the emission enhancement mechanisms in orthogonal double-pulse laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc.88, 150–155 (2013).
    [CrossRef]
  15. X. K. Shen and Y. F. Lu, “Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt.47(11), 1810–1815 (2008).
    [CrossRef] [PubMed]
  16. Envimetrics, LAMPS unit manual (2009).
  17. Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom.25(8), 1316–1323 (2010).
    [CrossRef]
  18. B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photonics2(9), 537–540 (2008).
    [CrossRef]
  19. Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc.73, 89–92 (2012).
    [CrossRef]
  20. Y. Ikeda, A. Moon, and M. Kaneko, “Development of microwave-enhanced spark induced breakdown spectroscopy,” Appl. Opt.49(13), C95–C100 (2010).
    [CrossRef]
  21. Y. Ikeda and R. Tsuruoka, “Characteristics of microwave plasma induced by lasers and sparks,” Appl. Opt.51(7), B183–B191 (2012).
    [CrossRef] [PubMed]
  22. Y. Meir and E. Jerby, “Breakdown spectroscopy induced by localized microwaves for material identification,” Microw. Opt. Technol. Lett.53(10), 2281–2283 (2011).
    [CrossRef]
  23. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc.54(3), 331–340 (2000).
    [CrossRef]
  24. K. W. Busch and T. J. Vickers, “Fundamental properties characterizing low-pressure microwave-induced plasmas as excitation sources for spectroanalytical chemistry,” Spectrochim. Acta B At. Spectrosc.28(3), 85–104 (1973).
    [CrossRef]
  25. R. L. Kurucz and B. Bell, “Atomic line data,” Kurucz CD-ROM No. 23 (Smithsonian Astrophysical Observatory, 1995). Available: http://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html .
  26. V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana J. Phys.74(6), 983–993 (2010).
    [CrossRef]
  27. J. Zalach and St. Franke, “Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp,” J. Appl. Phys.113(4), 043303 (2013).
    [CrossRef]
  28. A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B At. Spectrosc.63(7), 805–816 (2008).
    [CrossRef]
  29. R. W. P. McWhirter, “Spectral intensities,” in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, eds. (Academic, 1965).
  30. J. D. Ingle, Jr. and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, 1988).

2013 (3)

X. Liu, S. Sun, X. Wang, Z. Liu, Q. Liu, P. Ding, Z. Guo, and B. Hu, “Effect of laser pulse energy on orthogonal double femtosecond pulse laser-induced breakdown spectroscopy,” Opt. Express21(S4Suppl 4), A704–A713 (2013).
[CrossRef] [PubMed]

R. Sanginés and H. Sobral, “Time resolved study of the emission enhancement mechanisms in orthogonal double-pulse laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc.88, 150–155 (2013).
[CrossRef]

J. Zalach and St. Franke, “Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp,” J. Appl. Phys.113(4), 043303 (2013).
[CrossRef]

2012 (2)

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc.73, 89–92 (2012).
[CrossRef]

Y. Ikeda and R. Tsuruoka, “Characteristics of microwave plasma induced by lasers and sparks,” Appl. Opt.51(7), B183–B191 (2012).
[CrossRef] [PubMed]

2011 (1)

Y. Meir and E. Jerby, “Breakdown spectroscopy induced by localized microwaves for material identification,” Microw. Opt. Technol. Lett.53(10), 2281–2283 (2011).
[CrossRef]

2010 (3)

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom.25(8), 1316–1323 (2010).
[CrossRef]

Y. Ikeda, A. Moon, and M. Kaneko, “Development of microwave-enhanced spark induced breakdown spectroscopy,” Appl. Opt.49(13), C95–C100 (2010).
[CrossRef]

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana J. Phys.74(6), 983–993 (2010).
[CrossRef]

2008 (3)

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B At. Spectrosc.63(7), 805–816 (2008).
[CrossRef]

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photonics2(9), 537–540 (2008).
[CrossRef]

X. K. Shen and Y. F. Lu, “Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt.47(11), 1810–1815 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

2002 (2)

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: A review of the experimental approaches,” Spectrochim. Acta, B At. Spectrosc.57(7), 1115–1130 (2002).
[CrossRef]

L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta B At. Spectrosc.57(7), 1109–1113 (2002).
[CrossRef]

2000 (2)

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem.72(9), 2087–2092 (2000).
[CrossRef] [PubMed]

K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc.54(3), 331–340 (2000).
[CrossRef]

1998 (1)

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Recent trends and the future of laser induced plasma spectroscopy,” Trends Anal. Chem.17(8–9), 453–461 (1998).
[CrossRef]

1995 (2)

D. A. Cremers, J. E. Barefield, and A. C. Koskelo, “Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber optic cable,” Appl. Spectrosc.49(6), 857–860 (1995).
[CrossRef]

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D28(10), 2181–2187 (1995).
[CrossRef]

1991 (1)

1973 (1)

K. W. Busch and T. J. Vickers, “Fundamental properties characterizing low-pressure microwave-induced plasmas as excitation sources for spectroanalytical chemistry,” Spectrochim. Acta B At. Spectrosc.28(3), 85–104 (1973).
[CrossRef]

Allen, S. D.

Alti, K.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana J. Phys.74(6), 983–993 (2010).
[CrossRef]

Babushok, V. I.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

Barefield, J. E.

Baudelet, M.

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc.73, 89–92 (2012).
[CrossRef]

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom.25(8), 1316–1323 (2010).
[CrossRef]

Bousquet, B.

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc.73, 89–92 (2012).
[CrossRef]

Bruno, D.

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B At. Spectrosc.63(7), 805–816 (2008).
[CrossRef]

Brust, J.

Busch, K. W.

K. W. Busch and T. J. Vickers, “Fundamental properties characterizing low-pressure microwave-induced plasmas as excitation sources for spectroanalytical chemistry,” Spectrochim. Acta B At. Spectrosc.28(3), 85–104 (1973).
[CrossRef]

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Recent trends and the future of laser induced plasma spectroscopy,” Trends Anal. Chem.17(8–9), 453–461 (1998).
[CrossRef]

Chan, S. Y.

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem.72(9), 2087–2092 (2000).
[CrossRef] [PubMed]

Cheung, N. H.

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem.72(9), 2087–2092 (2000).
[CrossRef] [PubMed]

Corsi, M.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: A review of the experimental approaches,” Spectrochim. Acta, B At. Spectrosc.57(7), 1115–1130 (2002).
[CrossRef]

Cremers, D. A.

Cristoforetti, G.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: A review of the experimental approaches,” Spectrochim. Acta, B At. Spectrosc.57(7), 1115–1130 (2002).
[CrossRef]

De Giacomo, A.

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B At. Spectrosc.63(7), 805–816 (2008).
[CrossRef]

De Pascale, O.

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B At. Spectrosc.63(7), 805–816 (2008).
[CrossRef]

Dell’Aglio, M.

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B At. Spectrosc.63(7), 805–816 (2008).
[CrossRef]

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

Ding, P.

Dottery, E. L.

Ferris, M. J.

Franke, St.

J. Zalach and St. Franke, “Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp,” J. Appl. Phys.113(4), 043303 (2013).
[CrossRef]

Gaudiuso, R.

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B At. Spectrosc.63(7), 805–816 (2008).
[CrossRef]

Gottfried, J. L.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

Guo, Z.

Gupta, G. P.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana J. Phys.74(6), 983–993 (2010).
[CrossRef]

Hu, B.

Ikeda, Y.

Jerby, E.

Y. Meir and E. Jerby, “Breakdown spectroscopy induced by localized microwaves for material identification,” Microw. Opt. Technol. Lett.53(10), 2281–2283 (2011).
[CrossRef]

Kaneko, M.

Kartha, V. B.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana J. Phys.74(6), 983–993 (2010).
[CrossRef]

Kearton, B.

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photonics2(9), 537–540 (2008).
[CrossRef]

Killinger, D. K.

Knight, K.

Koskelo, A. C.

Leis, F.

Liu, Q.

Liu, X.

Liu, Y.

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc.73, 89–92 (2012).
[CrossRef]

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom.25(8), 1316–1323 (2010).
[CrossRef]

Liu, Z.

Lu, Y. F.

Mattley, Y.

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photonics2(9), 537–540 (2008).
[CrossRef]

Meir, Y.

Y. Meir and E. Jerby, “Breakdown spectroscopy induced by localized microwaves for material identification,” Microw. Opt. Technol. Lett.53(10), 2281–2283 (2011).
[CrossRef]

Miziolek, A. W.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

Moon, A.

Munson, C. A.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

Niemax, K.

Noll, R.

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D28(10), 2181–2187 (1995).
[CrossRef]

Palleschi, V.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: A review of the experimental approaches,” Spectrochim. Acta, B At. Spectrosc.57(7), 1115–1130 (2002).
[CrossRef]

Radziemski, L. J.

L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta B At. Spectrosc.57(7), 1109–1113 (2002).
[CrossRef]

Richardson, M.

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc.73, 89–92 (2012).
[CrossRef]

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom.25(8), 1316–1323 (2010).
[CrossRef]

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Recent trends and the future of laser induced plasma spectroscopy,” Trends Anal. Chem.17(8–9), 453–461 (1998).
[CrossRef]

Sanginés, R.

R. Sanginés and H. Sobral, “Time resolved study of the emission enhancement mechanisms in orthogonal double-pulse laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc.88, 150–155 (2013).
[CrossRef]

Santhosh, C.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana J. Phys.74(6), 983–993 (2010).
[CrossRef]

Sattmann, R.

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D28(10), 2181–2187 (1995).
[CrossRef]

Scherbarth, N. L.

Sdorra, W.

Shen, X. K.

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Recent trends and the future of laser induced plasma spectroscopy,” Trends Anal. Chem.17(8–9), 453–461 (1998).
[CrossRef]

Sobral, H.

R. Sanginés and H. Sobral, “Time resolved study of the emission enhancement mechanisms in orthogonal double-pulse laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc.88, 150–155 (2013).
[CrossRef]

Stefano, C.

Sturm, V.

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D28(10), 2181–2187 (1995).
[CrossRef]

Sun, S.

Suri, B. M.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana J. Phys.74(6), 983–993 (2010).
[CrossRef]

Tognoni, E.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: A review of the experimental approaches,” Spectrochim. Acta, B At. Spectrosc.57(7), 1115–1130 (2002).
[CrossRef]

Tsuruoka, R.

Uebbing, J.

Unnikrishnan, V. K.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana J. Phys.74(6), 983–993 (2010).
[CrossRef]

Vickers, T. J.

K. W. Busch and T. J. Vickers, “Fundamental properties characterizing low-pressure microwave-induced plasmas as excitation sources for spectroanalytical chemistry,” Spectrochim. Acta B At. Spectrosc.28(3), 85–104 (1973).
[CrossRef]

Wang, X.

Waterbury, R. D.

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Recent trends and the future of laser induced plasma spectroscopy,” Trends Anal. Chem.17(8–9), 453–461 (1998).
[CrossRef]

Zalach, J.

J. Zalach and St. Franke, “Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp,” J. Appl. Phys.113(4), 043303 (2013).
[CrossRef]

Anal. Chem. (1)

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem.72(9), 2087–2092 (2000).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (3)

J. Anal. At. Spectrom. (1)

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom.25(8), 1316–1323 (2010).
[CrossRef]

J. Appl. Phys. (1)

J. Zalach and St. Franke, “Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp,” J. Appl. Phys.113(4), 043303 (2013).
[CrossRef]

J. Phys. D (1)

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D28(10), 2181–2187 (1995).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

Y. Meir and E. Jerby, “Breakdown spectroscopy induced by localized microwaves for material identification,” Microw. Opt. Technol. Lett.53(10), 2281–2283 (2011).
[CrossRef]

Nat. Photonics (1)

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photonics2(9), 537–540 (2008).
[CrossRef]

Opt. Express (2)

Pramana J. Phys. (1)

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana J. Phys.74(6), 983–993 (2010).
[CrossRef]

Spectrochim. Acta B At. Spectrosc. (6)

K. W. Busch and T. J. Vickers, “Fundamental properties characterizing low-pressure microwave-induced plasmas as excitation sources for spectroanalytical chemistry,” Spectrochim. Acta B At. Spectrosc.28(3), 85–104 (1973).
[CrossRef]

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B At. Spectrosc.63(7), 805–816 (2008).
[CrossRef]

R. Sanginés and H. Sobral, “Time resolved study of the emission enhancement mechanisms in orthogonal double-pulse laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc.88, 150–155 (2013).
[CrossRef]

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc.73, 89–92 (2012).
[CrossRef]

L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta B At. Spectrosc.57(7), 1109–1113 (2002).
[CrossRef]

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

Spectrochim. Acta, B At. Spectrosc. (1)

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: A review of the experimental approaches,” Spectrochim. Acta, B At. Spectrosc.57(7), 1115–1130 (2002).
[CrossRef]

Trends Anal. Chem. (1)

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Recent trends and the future of laser induced plasma spectroscopy,” Trends Anal. Chem.17(8–9), 453–461 (1998).
[CrossRef]

Other (7)

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy (Cambridge University, 2006).

Envimetrics, LAMPS unit manual (2009).

R. W. P. McWhirter, “Spectral intensities,” in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, eds. (Academic, 1965).

J. D. Ingle, Jr. and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, 1988).

R. L. Kurucz and B. Bell, “Atomic line data,” Kurucz CD-ROM No. 23 (Smithsonian Astrophysical Observatory, 1995). Available: http://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html .

L. J. Radziemski, R. W. Solarz, and J. A. Paisner, Laser Spectroscopy and Its Applications, 1st ed. (Marcel Dekker, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup used in this study.

Fig. 2
Fig. 2

Pressure dependence of the Gd I 422.56 nm and Gd II 342.25 nm emissions of a Gd2O3 sample taken by using LIBS with and without microwave.

Fig. 3
Fig. 3

Enhancement dependence of the Gd I 422.56 nm and Gd II 342.25 nm emissions on ambient pressure by using MA-LIBS method.

Fig. 4
Fig. 4

Emission spectrum of Gd2O3 from 300 nm to 450 nm using LIBS with and without microwave.

Fig. 5
Fig. 5

Emission spectrum of Gd2O3 from 340 nm to 345 nm using LIBS with and without microwave.

Fig. 6
Fig. 6

Emission spectrum of Gd2O3 from 418 nm to 423 nm using LIBS with and without microwave.

Fig. 7
Fig. 7

Boltzmann plot made from the analysis of twenty two Gd II lines, considering the intensities at 2.67 kPa of air surrounding gas. The continuous line represents the result of a linear best fit. I and λ are the intensity and the wavelength of a transition from upper level k of energy Ek and statistical weight g to lower level i with A as the corresponding transition probability. The slope gives the temperature as approximately 7500 K and 5700 K in MA-LIBS and standard LIBS methods, respectively.

Fig. 8
Fig. 8

Plasma temperature dependence of MA-LIBS on a delay time.

Fig. 9
Fig. 9

Time profiles of emission intensity of Gd I 422.56 nm and Gd II 342.25 nm using LIBS with and without microwave.

Fig. 10
Fig. 10

Emission spectra of Ca II 393.37 nm taken from the Gd2O3 sample by using MA-LIBS method.

Fig. 11
Fig. 11

Emission spectra of Ca II 393.37 nm taken from the Gd2O3 sample by using standard LIBS method.

Fig. 12
Fig. 12

Calibration curve of Ca in the Gd2O3 sample by using MA-LIBS and conventional LIBS methods.

Tables (1)

Tables Icon

Table 1 Wavelength, upper level energy, upper level degeneracy, and transition probability for the ionic Gd emission lines used in this study.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ln( Iλ g k A k )= 1 k B T E k +C
y=m E u i + y 0
Ne1.6x 10 12 T e 1/2 Δ E 3

Metrics