Abstract

A strong anti-Stokes Raman signal, from the vibrational Q(1) transition of hydrogen, is generated in gas-filled hollow-core photonic crystal fiber. To be efficient, this process requires phase-matching, which is not automatically provided since the group velocity dispersion is typically non-zero and—inside a fiber—cannot be compensated for using a crossed-beam geometry. Phase-matching can however be arranged by exploiting the different dispersion profiles of higher-order modes. We demonstrate the generation of first and second anti-Stokes signals in higher-order modes by pumping with an appropriate mixture of fundamental and a higher-order modes, synthesized using a spatial light modulator. Conversion efficiencies as high as 5.3% are achieved from the pump to the first anti-Stokes band.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Wilke and W. Schmidt, “Tunable UV-radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. (Berl.)16(2), 151–154 (1978).
    [CrossRef]
  2. R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
    [CrossRef]
  3. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
    [CrossRef] [PubMed]
  4. H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science331(6021), 1165–1168 (2011).
    [CrossRef] [PubMed]
  5. Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett.105(12), 123603 (2010).
    [CrossRef] [PubMed]
  6. J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A82(1), 011805 (2010).
    [CrossRef]
  7. S. Zaitsu and T. Imasaka, “Phase-matched generation of higher-order continuous-wave coherent Raman sidebands,” Opt. Commun.285(3), 347–351 (2012).
    [CrossRef]
  8. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” in Integrated Photonics Research, paper IThE3 (2004).
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  10. J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett.35(17), 2922–2924 (2010).
    [CrossRef] [PubMed]
  11. M. Ziemienczuk, A. M. Walser, A. Abdolvand, A. Nazarkin, and P. St.J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B29(7), 1563–1568 (2012).
    [CrossRef]
  12. B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, and P. St. J. Russell, “Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber,” Opt. Lett.38(5), 600–602 (2013).
    [CrossRef] [PubMed]
  13. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express16(22), 17972–17981 (2008).
    [CrossRef] [PubMed]
  14. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric wave-guides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43(4), 1783–1809 (1964).
    [CrossRef]
  15. E. R. Peck and S. Huang, “Refractivity and dispersion of hydrogen in the visible and near infrared,” J. Opt. Soc. Am.67(11), 1550–1554 (1977).
    [CrossRef]
  16. J. F. Reintjes, “Stimulated Raman and Brillouin Scattering,” in Handbook of Laser Science and Technology, Supplement 2: Optical Materials, M. J. Weber, ed. (CRC Press, 1995).
  17. A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A79(3), 031805 (2009).
    [CrossRef]
  18. V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Y. G. Khronopulo, and M. F. Shalyaev, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP43, 430–435 (1976).
  19. V. S. Butylkin, G. V. Venkin, V. P. Protasov, N. D. Smirnov, Y. G. Khronopulo, and M. F. Shalyaev, “Spatially-bounded phase capture and axial anti-Stokes radiation in SRS in gases,” JETP Lett.17, 285 (1973).
  20. M. D. Duncan, R. Mahon, J. Reintjes, and L. L. Tankersley, “Parametric Raman gain suppression in D2 and H2,” Opt. Lett.11(12), 803–805 (1986).
    [CrossRef] [PubMed]
  21. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24(4), 1980–1993 (1981).
    [CrossRef]

2013

2012

2011

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science331(6021), 1165–1168 (2011).
[CrossRef] [PubMed]

2010

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett.105(12), 123603 (2010).
[CrossRef] [PubMed]

J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A82(1), 011805 (2010).
[CrossRef]

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett.35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

2009

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A79(3), 031805 (2009).
[CrossRef]

2008

2007

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

1986

1981

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24(4), 1980–1993 (1981).
[CrossRef]

1978

V. Wilke and W. Schmidt, “Tunable UV-radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. (Berl.)16(2), 151–154 (1978).
[CrossRef]

1977

1976

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Y. G. Khronopulo, and M. F. Shalyaev, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP43, 430–435 (1976).

1974

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

1973

V. S. Butylkin, G. V. Venkin, V. P. Protasov, N. D. Smirnov, Y. G. Khronopulo, and M. F. Shalyaev, “Spatially-bounded phase capture and axial anti-Stokes radiation in SRS in gases,” JETP Lett.17, 285 (1973).

1964

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric wave-guides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43(4), 1783–1809 (1964).
[CrossRef]

Abdolvand, A.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Begley, R. F.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

Benabid, F.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett.105(12), 123603 (2010).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Butylkin, V. S.

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Y. G. Khronopulo, and M. F. Shalyaev, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP43, 430–435 (1976).

V. S. Butylkin, G. V. Venkin, V. P. Protasov, N. D. Smirnov, Y. G. Khronopulo, and M. F. Shalyaev, “Spatially-bounded phase capture and axial anti-Stokes radiation in SRS in gases,” JETP Lett.17, 285 (1973).

Byer, R. L.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

Chan, H.-S.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science331(6021), 1165–1168 (2011).
[CrossRef] [PubMed]

Chen, J. S. Y.

Couny, F.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett.105(12), 123603 (2010).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Duncan, M. D.

Euser, T. G.

Fisher, P. S.

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Y. G. Khronopulo, and M. F. Shalyaev, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP43, 430–435 (1976).

Green, J. T.

J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A82(1), 011805 (2010).
[CrossRef]

Harvey, A. B.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

Hölzer, P.

Hsieh, Z.-M.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science331(6021), 1165–1168 (2011).
[CrossRef] [PubMed]

Huang, S.

Imasaka, T.

S. Zaitsu and T. Imasaka, “Phase-matched generation of higher-order continuous-wave coherent Raman sidebands,” Opt. Commun.285(3), 347–351 (2012).
[CrossRef]

Joly, N. Y.

Kaminski, C. F.

Khronopulo, Y. G.

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Y. G. Khronopulo, and M. F. Shalyaev, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP43, 430–435 (1976).

V. S. Butylkin, G. V. Venkin, V. P. Protasov, N. D. Smirnov, Y. G. Khronopulo, and M. F. Shalyaev, “Spatially-bounded phase capture and axial anti-Stokes radiation in SRS in gases,” JETP Lett.17, 285 (1973).

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Kung, A. H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science331(6021), 1165–1168 (2011).
[CrossRef] [PubMed]

Lai, C.-J.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science331(6021), 1165–1168 (2011).
[CrossRef] [PubMed]

Lee, C.-K.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science331(6021), 1165–1168 (2011).
[CrossRef] [PubMed]

Liang, W.-H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science331(6021), 1165–1168 (2011).
[CrossRef] [PubMed]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Mahon, R.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric wave-guides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43(4), 1783–1809 (1964).
[CrossRef]

Mostowski, J.

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24(4), 1980–1993 (1981).
[CrossRef]

Nazarkin, A.

Nold, J.

Pan, R.-P.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science331(6021), 1165–1168 (2011).
[CrossRef] [PubMed]

Peck, E. R.

Peng, L.-H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science331(6021), 1165–1168 (2011).
[CrossRef] [PubMed]

Podlipensky, A.

Protasov, V. P.

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Y. G. Khronopulo, and M. F. Shalyaev, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP43, 430–435 (1976).

V. S. Butylkin, G. V. Venkin, V. P. Protasov, N. D. Smirnov, Y. G. Khronopulo, and M. F. Shalyaev, “Spatially-bounded phase capture and axial anti-Stokes radiation in SRS in gases,” JETP Lett.17, 285 (1973).

Raymer, M. G.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett.105(12), 123603 (2010).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24(4), 1980–1993 (1981).
[CrossRef]

Reintjes, J.

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Russell, P. St. J.

Russell, P. St.J.

Scharrer, M.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric wave-guides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43(4), 1783–1809 (1964).
[CrossRef]

Schmidt, W.

V. Wilke and W. Schmidt, “Tunable UV-radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. (Berl.)16(2), 151–154 (1978).
[CrossRef]

Shalyaev, M. F.

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Y. G. Khronopulo, and M. F. Shalyaev, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP43, 430–435 (1976).

V. S. Butylkin, G. V. Venkin, V. P. Protasov, N. D. Smirnov, Y. G. Khronopulo, and M. F. Shalyaev, “Spatially-bounded phase capture and axial anti-Stokes radiation in SRS in gases,” JETP Lett.17, 285 (1973).

Smirnov, N. D.

V. S. Butylkin, G. V. Venkin, V. P. Protasov, N. D. Smirnov, Y. G. Khronopulo, and M. F. Shalyaev, “Spatially-bounded phase capture and axial anti-Stokes radiation in SRS in gases,” JETP Lett.17, 285 (1973).

Tankersley, L. L.

Trabold, B. M.

Venkin, G. V.

V. S. Butylkin, G. V. Venkin, V. P. Protasov, N. D. Smirnov, Y. G. Khronopulo, and M. F. Shalyaev, “Spatially-bounded phase capture and axial anti-Stokes radiation in SRS in gases,” JETP Lett.17, 285 (1973).

Venkin, V. G.

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Y. G. Khronopulo, and M. F. Shalyaev, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP43, 430–435 (1976).

Walser, A. M.

Wang, Y. Y.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett.105(12), 123603 (2010).
[CrossRef] [PubMed]

Weber, J. J.

J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A82(1), 011805 (2010).
[CrossRef]

Whyte, G.

Wilke, V.

V. Wilke and W. Schmidt, “Tunable UV-radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. (Berl.)16(2), 151–154 (1978).
[CrossRef]

Wong, G. K. L.

Wu, C.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett.105(12), 123603 (2010).
[CrossRef] [PubMed]

Yavuz, D. D.

J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A82(1), 011805 (2010).
[CrossRef]

Zaitsu, S.

S. Zaitsu and T. Imasaka, “Phase-matched generation of higher-order continuous-wave coherent Raman sidebands,” Opt. Commun.285(3), 347–351 (2012).
[CrossRef]

Ziemienczuk, M.

Appl. Phys. (Berl.)

V. Wilke and W. Schmidt, “Tunable UV-radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. (Berl.)16(2), 151–154 (1978).
[CrossRef]

Appl. Phys. Lett.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric wave-guides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43(4), 1783–1809 (1964).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

JETP Lett.

V. S. Butylkin, G. V. Venkin, V. P. Protasov, N. D. Smirnov, Y. G. Khronopulo, and M. F. Shalyaev, “Spatially-bounded phase capture and axial anti-Stokes radiation in SRS in gases,” JETP Lett.17, 285 (1973).

Opt. Commun.

S. Zaitsu and T. Imasaka, “Phase-matched generation of higher-order continuous-wave coherent Raman sidebands,” Opt. Commun.285(3), 347–351 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A79(3), 031805 (2009).
[CrossRef]

J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A82(1), 011805 (2010).
[CrossRef]

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24(4), 1980–1993 (1981).
[CrossRef]

Phys. Rev. Lett.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett.105(12), 123603 (2010).
[CrossRef] [PubMed]

Science

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science331(6021), 1165–1168 (2011).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Sov. Phys. JETP

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Y. G. Khronopulo, and M. F. Shalyaev, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP43, 430–435 (1976).

Other

J. F. Reintjes, “Stimulated Raman and Brillouin Scattering,” in Handbook of Laser Science and Technology, Supplement 2: Optical Materials, M. J. Weber, ed. (CRC Press, 1995).

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” in Integrated Photonics Research, paper IThE3 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental set-up. λ/2: half-wave plate; PBS: polarizing beam splitter; BP: bandpass filter.

Fig. 2
Fig. 2

Scanning electron micrograph of the kagomé-PCF used in the experiments.

Fig. 3
Fig. 3

Phase patterns created on the SLM for exciting (a) a mixture of LP01 and LP11 modes, (b) a mixture of LP01 and LP02 modes within the kagomé fiber.

Fig. 4
Fig. 4

Intensity distributions of the modes at the fiber end-face: (a) pump in a 1:2 mixture of LP01 and LP11 modes; (b) first AS in the LP11 mode; (c) second AS in the LP21 mode (H2-pressure 6 bar); (d) second AS in the LP11 mode distorted by some LP21 content (H2-pressure 25 bar); (c) first AS in the LP03 mode the pump being a mixture of LP01 and LP02 modes.

Fig. 5
Fig. 5

Diagrams showing the pump, Stokes, first and second AS frequencies together with the dispersion curves for the LP01, LP11, LP21, LP02 and LP03 modes, plotted versus the wavevector difference between k0 (the vacuum wavevector) and β (the propagation constant in the kagomé-PCF at zero pressure). Note that k0 changes linearly with the optical frequency. (a) The pump energy is shared between the LP01 and the LP11 modes. A Stokes signal is generated in the LP01 mode, accompanied by excitation of the green and the purple coherence waves. (b) The first AS signal in LP01 mode is not phase-matched since neither the green nor the purple coherence wave can drive the red dashed transition. However, a first AS signal can be generated in the LP11 mode using the purple coherence wave along with an LP01 pump, or the green coherence wave along with an LP11 pump. (c) Second AS signal is generated in the LP21 mode using the purple coherence wave, or in the LP11 mode using the green coherence wave. (d) With a pump shared between the LP01 and the LP02 modes, Stokes generation in the LP01 mode is accompanied by the creation of the yellow and the green coherence waves. The yellow coherence wave is re-used for the conversion of the LP02 pump to an LP03 AS signal.

Fig. 6
Fig. 6

Phase-mismatch versus pressure, (a) for conversion to a first AS signal in the LP01 (blue), LP03 (red) or LP11 mode (green), (b) for conversion to a second AS signal in LP11 (purple) or LP21 mode (cyan). The experimental pressure was limited to 25 bar.

Fig. 7
Fig. 7

Conversion efficiency from pump to first AS in the LP11 mode (output AS energy over output pump energy in the absence of SRS) plotted against the fraction f11 of pump energy in the LP11 mode. The fiber length was 1.2 m. The red curve (left-hand y-axis) is for a total coupled pump energy of 11 μJ at a pressure of 25 bar, and the blue curve (right-hand y-axis) for 15 μJ and 15 bar.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n pm (λ)= n gas 2 (λ) ( λ u pm 2πa ) 2

Metrics