Abstract

The multiphoton absorption of silk fibroin at 810 nm was determined by open-aperture Z-scan. Three-photon absorption was confirmed at this wavelength and the three-photon cross section of silk fibroin was measured. Silk fibroin of varying molecular weight was tested and the cross section was found to increase exponentially with increasing molecular weight. The confirmation of a relatively large three-photon absorption cross section in silk will help lay the groundwork for future investigation of direct laser writing of three-dimensional structures within a silk matrix.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330, 1–12 (2003).
    [CrossRef]
  2. R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc.112, 906–913 (2012).
    [CrossRef]
  3. H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials - a road to sustainable high technology,” Adv Mater.24, 2824–2837 (2012).
    [CrossRef] [PubMed]
  4. H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
    [CrossRef] [PubMed]
  5. F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2, 641–643 (2008).
    [CrossRef]
  6. J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibiotics in silk and eliminating the cold chain,” Proc. Natl. Acad. Sci. U. S. A.109, 11981–11986 (2012).
    [CrossRef] [PubMed]
  7. X. Wang, T. Yucel, Q. Lu, X. Hu, and D. L. Kaplan, “Silk nanospheres and microspheres from silk/pva blend films for drug delivery,” Biomaterials31, 1025–1035 (2010).
    [CrossRef]
  8. M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
    [CrossRef]
  9. R. A. Ganeev, “Nonlinear refraction and nonlinear absorption of various media,” J. Opt. A Pure Appl. Opt.7, 717–733 (2005).
    [CrossRef]
  10. M. Samoc, A. Samoc, B. Luther-Davies, and Z. Bao, “Femtosecond Z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order nonlinearity of soluble conjugated polymers,” J. Opt. Soc. Am. B15, 817–825 (1998).
    [CrossRef]
  11. J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express13, 9235–9247 (2005).
    [CrossRef] [PubMed]
  12. D. Rativa, S. J. S. da Silva, J. Del Nero, A. S. L. Gomes, and R. E. de Araujo, “Nonlinear optical properties of aromatic amino acids in the femtosecond regime,” J. Opt. Soc. Am. B27, 2665–2668 (2010).
    [CrossRef]
  13. D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc.6, 1612–1631 (2011).
    [CrossRef] [PubMed]
  14. B. Gu, J. Wang, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Z-scan theory for material with two- and three-photon absorption,” Opt. Express13, 9230–9234 (2005).
    [CrossRef] [PubMed]
  15. F. E. Hernández, K. D. Belfield, and I. Cohanoschi, “Three-photon absorption enhancement in a symmetrical charge transfer fluorene derivative,” Chem. Phys. Lett.391, 22–26 (2004).
    [CrossRef]
  16. J. Hsu, Multiple Comparisons: Theory and Methods (Chapman, 1996).
  17. A. Sionkowska and A. Planecka, “The influence of UV radiation on silk fibroin,” Polym. Degrad. Stab.96, 523–528 (2011).
    [CrossRef]
  18. The Uniprot Consortium, “Update on activities at the Universal Protein Resource (UniProt) in 2013,” Nucleic Acids Res.41, D43–D47 (2013).
  19. D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem.17, 303–390 (1962).
    [CrossRef]
  20. I. Georgakoudi, I. Tsai, C. Greiner, C. Wong, J. Defelice, and D. Kaplan, “Intrinsic fluorescence changes associated with the conformational state of silk fibroin in biomaterial matrices,” Opt. Express15, 1043–1053 (2007).
    [CrossRef] [PubMed]
  21. Y. Meshalkin, “Two-photon absorption cross sections of aromatic amino acids and proteins,” Quantum Electron.536, 536–538 (1996).
    [CrossRef]
  22. H.-J. Jin and D. L. Kaplan, “Mechanism of silk processing in insects and spiders,” Nature424, 1057–1061 (2003).
    [CrossRef] [PubMed]
  23. P. Chen, H. S. Kim, C.-Y. Park, H.-S. Kim, I.-J. Chin, and H.-J. Jin, “pH-Triggered transition of silk fibroin from spherical micelles to nanofibrils in water,” Macromol. Res.16, 539–543 (2008).
    [CrossRef]
  24. J. Cuq and J. Cheftel, “Tryptophan degradation during heat treatments: Part 1 The degradation of free tryptophan,” Food Chem.12, 1–14 (1983).
    [CrossRef]
  25. M. Drobizhev, A. Karotki, and M. Kruk, “Uncovering coherent domain structure in a series of π-conjugated dendrimers by simultaneous three-photon absorption,” J. Phys. Chem. B108, 4221–4226 (2004).
    [CrossRef]
  26. Z. Suo, M. Drobizhev, C. W. Spangler, N. Christensson, and A. Rebane, “New fluorophores based on trifluorenylamine with very large intrinsic three-photon absorption cross sections,” Org. Lett.7, 4807–4810 (2005).
    [CrossRef] [PubMed]
  27. V. P. Leppanen, T. J. Haring, T. Jaaskelainen, E. Vartiainen, S. Parkkinen, and J. P. S Parkkinen, “The intensity dependent refractive index change of photochromic proteins,” Opt. Commun.163, 189–192 (1999).
    [CrossRef]
  28. M. J. Malone, J. Rosalie, A. M. Miller, and B. Kohler, “Singlet excited-state lifetimes of cytosine derivatives measured by femtosecond transient absorption,” Photochem. Photobiol.77, 158–164 (2003).
    [CrossRef] [PubMed]
  29. J. M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc., 123, 10370–10378 (2001).
    [PubMed]

2013

The Uniprot Consortium, “Update on activities at the Universal Protein Resource (UniProt) in 2013,” Nucleic Acids Res.41, D43–D47 (2013).

2012

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc.112, 906–913 (2012).
[CrossRef]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials - a road to sustainable high technology,” Adv Mater.24, 2824–2837 (2012).
[CrossRef] [PubMed]

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibiotics in silk and eliminating the cold chain,” Proc. Natl. Acad. Sci. U. S. A.109, 11981–11986 (2012).
[CrossRef] [PubMed]

2011

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc.6, 1612–1631 (2011).
[CrossRef] [PubMed]

A. Sionkowska and A. Planecka, “The influence of UV radiation on silk fibroin,” Polym. Degrad. Stab.96, 523–528 (2011).
[CrossRef]

2010

D. Rativa, S. J. S. da Silva, J. Del Nero, A. S. L. Gomes, and R. E. de Araujo, “Nonlinear optical properties of aromatic amino acids in the femtosecond regime,” J. Opt. Soc. Am. B27, 2665–2668 (2010).
[CrossRef]

X. Wang, T. Yucel, Q. Lu, X. Hu, and D. L. Kaplan, “Silk nanospheres and microspheres from silk/pva blend films for drug delivery,” Biomaterials31, 1025–1035 (2010).
[CrossRef]

2008

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2, 641–643 (2008).
[CrossRef]

P. Chen, H. S. Kim, C.-Y. Park, H.-S. Kim, I.-J. Chin, and H.-J. Jin, “pH-Triggered transition of silk fibroin from spherical micelles to nanofibrils in water,” Macromol. Res.16, 539–543 (2008).
[CrossRef]

2007

2005

B. Gu, J. Wang, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Z-scan theory for material with two- and three-photon absorption,” Opt. Express13, 9230–9234 (2005).
[CrossRef] [PubMed]

J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express13, 9235–9247 (2005).
[CrossRef] [PubMed]

Z. Suo, M. Drobizhev, C. W. Spangler, N. Christensson, and A. Rebane, “New fluorophores based on trifluorenylamine with very large intrinsic three-photon absorption cross sections,” Org. Lett.7, 4807–4810 (2005).
[CrossRef] [PubMed]

R. A. Ganeev, “Nonlinear refraction and nonlinear absorption of various media,” J. Opt. A Pure Appl. Opt.7, 717–733 (2005).
[CrossRef]

2004

M. Drobizhev, A. Karotki, and M. Kruk, “Uncovering coherent domain structure in a series of π-conjugated dendrimers by simultaneous three-photon absorption,” J. Phys. Chem. B108, 4221–4226 (2004).
[CrossRef]

F. E. Hernández, K. D. Belfield, and I. Cohanoschi, “Three-photon absorption enhancement in a symmetrical charge transfer fluorene derivative,” Chem. Phys. Lett.391, 22–26 (2004).
[CrossRef]

2003

M. J. Malone, J. Rosalie, A. M. Miller, and B. Kohler, “Singlet excited-state lifetimes of cytosine derivatives measured by femtosecond transient absorption,” Photochem. Photobiol.77, 158–164 (2003).
[CrossRef] [PubMed]

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330, 1–12 (2003).
[CrossRef]

H.-J. Jin and D. L. Kaplan, “Mechanism of silk processing in insects and spiders,” Nature424, 1057–1061 (2003).
[CrossRef] [PubMed]

2001

J. M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc., 123, 10370–10378 (2001).
[PubMed]

1999

V. P. Leppanen, T. J. Haring, T. Jaaskelainen, E. Vartiainen, S. Parkkinen, and J. P. S Parkkinen, “The intensity dependent refractive index change of photochromic proteins,” Opt. Commun.163, 189–192 (1999).
[CrossRef]

1998

1996

Y. Meshalkin, “Two-photon absorption cross sections of aromatic amino acids and proteins,” Quantum Electron.536, 536–538 (1996).
[CrossRef]

1990

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

1983

J. Cuq and J. Cheftel, “Tryptophan degradation during heat treatments: Part 1 The degradation of free tryptophan,” Food Chem.12, 1–14 (1983).
[CrossRef]

1962

D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem.17, 303–390 (1962).
[CrossRef]

Amsden, J. J.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

Bao, Z.

Belfield, K. D.

F. E. Hernández, K. D. Belfield, and I. Cohanoschi, “Three-photon absorption enhancement in a symmetrical charge transfer fluorene derivative,” Chem. Phys. Lett.391, 22–26 (2004).
[CrossRef]

Boltaev, G. S.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc.112, 906–913 (2012).
[CrossRef]

Brenckle, M. A.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

Cheftel, J.

J. Cuq and J. Cheftel, “Tryptophan degradation during heat treatments: Part 1 The degradation of free tryptophan,” Food Chem.12, 1–14 (1983).
[CrossRef]

Chen, J.

Chen, P.

P. Chen, H. S. Kim, C.-Y. Park, H.-S. Kim, I.-J. Chin, and H.-J. Jin, “pH-Triggered transition of silk fibroin from spherical micelles to nanofibrils in water,” Macromol. Res.16, 539–543 (2008).
[CrossRef]

Chin, I.-J.

P. Chen, H. S. Kim, C.-Y. Park, H.-S. Kim, I.-J. Chin, and H.-J. Jin, “pH-Triggered transition of silk fibroin from spherical micelles to nanofibrils in water,” Macromol. Res.16, 539–543 (2008).
[CrossRef]

Christensson, N.

Z. Suo, M. Drobizhev, C. W. Spangler, N. Christensson, and A. Rebane, “New fluorophores based on trifluorenylamine with very large intrinsic three-photon absorption cross sections,” Org. Lett.7, 4807–4810 (2005).
[CrossRef] [PubMed]

Cohanoschi, I.

F. E. Hernández, K. D. Belfield, and I. Cohanoschi, “Three-photon absorption enhancement in a symmetrical charge transfer fluorene derivative,” Chem. Phys. Lett.391, 22–26 (2004).
[CrossRef]

Cuq, J.

J. Cuq and J. Cheftel, “Tryptophan degradation during heat treatments: Part 1 The degradation of free tryptophan,” Food Chem.12, 1–14 (1983).
[CrossRef]

da Silva, S. J. S.

de Araujo, R. E.

Defelice, J.

Del Nero, J.

Ding, J.

Drobizhev, M.

Z. Suo, M. Drobizhev, C. W. Spangler, N. Christensson, and A. Rebane, “New fluorophores based on trifluorenylamine with very large intrinsic three-photon absorption cross sections,” Org. Lett.7, 4807–4810 (2005).
[CrossRef] [PubMed]

M. Drobizhev, A. Karotki, and M. Kruk, “Uncovering coherent domain structure in a series of π-conjugated dendrimers by simultaneous three-photon absorption,” J. Phys. Chem. B108, 4221–4226 (2004).
[CrossRef]

Elliott, S.

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330, 1–12 (2003).
[CrossRef]

Fan, Y.-X.

Fantini, S.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

Ganeev, R. A.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc.112, 906–913 (2012).
[CrossRef]

R. A. Ganeev, “Nonlinear refraction and nonlinear absorption of various media,” J. Opt. A Pure Appl. Opt.7, 717–733 (2005).
[CrossRef]

Georgakoudi, I.

Gomes, A. S. L.

Greiner, C.

Gu, B.

Hagan, D.

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

Haring, T. J.

V. P. Leppanen, T. J. Haring, T. Jaaskelainen, E. Vartiainen, S. Parkkinen, and J. P. S Parkkinen, “The intensity dependent refractive index change of photochromic proteins,” Opt. Commun.163, 189–192 (1999).
[CrossRef]

He, J.

Hernández, F. E.

F. E. Hernández, K. D. Belfield, and I. Cohanoschi, “Three-photon absorption enhancement in a symmetrical charge transfer fluorene derivative,” Chem. Phys. Lett.391, 22–26 (2004).
[CrossRef]

Hsu, J.

J. Hsu, Multiple Comparisons: Theory and Methods (Chapman, 1996).

Hu, X.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibiotics in silk and eliminating the cold chain,” Proc. Natl. Acad. Sci. U. S. A.109, 11981–11986 (2012).
[CrossRef] [PubMed]

X. Wang, T. Yucel, Q. Lu, X. Hu, and D. L. Kaplan, “Silk nanospheres and microspheres from silk/pva blend films for drug delivery,” Biomaterials31, 1025–1035 (2010).
[CrossRef]

Jaaskelainen, T.

V. P. Leppanen, T. J. Haring, T. Jaaskelainen, E. Vartiainen, S. Parkkinen, and J. P. S Parkkinen, “The intensity dependent refractive index change of photochromic proteins,” Opt. Commun.163, 189–192 (1999).
[CrossRef]

Ji, W.

Jin, H.-J.

P. Chen, H. S. Kim, C.-Y. Park, H.-S. Kim, I.-J. Chin, and H.-J. Jin, “pH-Triggered transition of silk fibroin from spherical micelles to nanofibrils in water,” Macromol. Res.16, 539–543 (2008).
[CrossRef]

H.-J. Jin and D. L. Kaplan, “Mechanism of silk processing in insects and spiders,” Nature424, 1057–1061 (2003).
[CrossRef] [PubMed]

Kainerstorfer, J. M.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

Kaplan, D.

Kaplan, D. L.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibiotics in silk and eliminating the cold chain,” Proc. Natl. Acad. Sci. U. S. A.109, 11981–11986 (2012).
[CrossRef] [PubMed]

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials - a road to sustainable high technology,” Adv Mater.24, 2824–2837 (2012).
[CrossRef] [PubMed]

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc.6, 1612–1631 (2011).
[CrossRef] [PubMed]

X. Wang, T. Yucel, Q. Lu, X. Hu, and D. L. Kaplan, “Silk nanospheres and microspheres from silk/pva blend films for drug delivery,” Biomaterials31, 1025–1035 (2010).
[CrossRef]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2, 641–643 (2008).
[CrossRef]

H.-J. Jin and D. L. Kaplan, “Mechanism of silk processing in insects and spiders,” Nature424, 1057–1061 (2003).
[CrossRef] [PubMed]

Karotki, A.

M. Drobizhev, A. Karotki, and M. Kruk, “Uncovering coherent domain structure in a series of π-conjugated dendrimers by simultaneous three-photon absorption,” J. Phys. Chem. B108, 4221–4226 (2004).
[CrossRef]

Kim, H. S.

P. Chen, H. S. Kim, C.-Y. Park, H.-S. Kim, I.-J. Chin, and H.-J. Jin, “pH-Triggered transition of silk fibroin from spherical micelles to nanofibrils in water,” Macromol. Res.16, 539–543 (2008).
[CrossRef]

Kim, H.-S.

P. Chen, H. S. Kim, C.-Y. Park, H.-S. Kim, I.-J. Chin, and H.-J. Jin, “pH-Triggered transition of silk fibroin from spherical micelles to nanofibrils in water,” Macromol. Res.16, 539–543 (2008).
[CrossRef]

Kohler, B.

M. J. Malone, J. Rosalie, A. M. Miller, and B. Kohler, “Singlet excited-state lifetimes of cytosine derivatives measured by femtosecond transient absorption,” Photochem. Photobiol.77, 158–164 (2003).
[CrossRef] [PubMed]

J. M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc., 123, 10370–10378 (2001).
[PubMed]

Kruk, M.

M. Drobizhev, A. Karotki, and M. Kruk, “Uncovering coherent domain structure in a series of π-conjugated dendrimers by simultaneous three-photon absorption,” J. Phys. Chem. B108, 4221–4226 (2004).
[CrossRef]

Leppanen, V. P.

V. P. Leppanen, T. J. Haring, T. Jaaskelainen, E. Vartiainen, S. Parkkinen, and J. P. S Parkkinen, “The intensity dependent refractive index change of photochromic proteins,” Opt. Commun.163, 189–192 (1999).
[CrossRef]

Levitt, J.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

Li, H.

Lovett, M. L.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc.6, 1612–1631 (2011).
[CrossRef] [PubMed]

Lu, Q.

X. Wang, T. Yucel, Q. Lu, X. Hu, and D. L. Kaplan, “Silk nanospheres and microspheres from silk/pva blend films for drug delivery,” Biomaterials31, 1025–1035 (2010).
[CrossRef]

Luther-Davies, B.

Malone, M. J.

M. J. Malone, J. Rosalie, A. M. Miller, and B. Kohler, “Singlet excited-state lifetimes of cytosine derivatives measured by femtosecond transient absorption,” Photochem. Photobiol.77, 158–164 (2003).
[CrossRef] [PubMed]

Meshalkin, Y.

Y. Meshalkin, “Two-photon absorption cross sections of aromatic amino acids and proteins,” Quantum Electron.536, 536–538 (1996).
[CrossRef]

Mi, J.

Miller, A. M.

M. J. Malone, J. Rosalie, A. M. Miller, and B. Kohler, “Singlet excited-state lifetimes of cytosine derivatives measured by femtosecond transient absorption,” Photochem. Photobiol.77, 158–164 (2003).
[CrossRef] [PubMed]

Omenetto, F. G.

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials - a road to sustainable high technology,” Adv Mater.24, 2824–2837 (2012).
[CrossRef] [PubMed]

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibiotics in silk and eliminating the cold chain,” Proc. Natl. Acad. Sci. U. S. A.109, 11981–11986 (2012).
[CrossRef] [PubMed]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2, 641–643 (2008).
[CrossRef]

Panilaitis, B.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibiotics in silk and eliminating the cold chain,” Proc. Natl. Acad. Sci. U. S. A.109, 11981–11986 (2012).
[CrossRef] [PubMed]

Panilaitis, B. J. B.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

Park, C.-Y.

P. Chen, H. S. Kim, C.-Y. Park, H.-S. Kim, I.-J. Chin, and H.-J. Jin, “pH-Triggered transition of silk fibroin from spherical micelles to nanofibrils in water,” Macromol. Res.16, 539–543 (2008).
[CrossRef]

Parkkinen, J. P. S

V. P. Leppanen, T. J. Haring, T. Jaaskelainen, E. Vartiainen, S. Parkkinen, and J. P. S Parkkinen, “The intensity dependent refractive index change of photochromic proteins,” Opt. Commun.163, 189–192 (1999).
[CrossRef]

Parkkinen, S.

V. P. Leppanen, T. J. Haring, T. Jaaskelainen, E. Vartiainen, S. Parkkinen, and J. P. S Parkkinen, “The intensity dependent refractive index change of photochromic proteins,” Opt. Commun.163, 189–192 (1999).
[CrossRef]

Pecourt, J. M. L.

J. M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc., 123, 10370–10378 (2001).
[PubMed]

Peon, J.

J. M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc., 123, 10370–10378 (2001).
[PubMed]

Planecka, A.

A. Sionkowska and A. Planecka, “The influence of UV radiation on silk fibroin,” Polym. Degrad. Stab.96, 523–528 (2011).
[CrossRef]

Preda, R. C.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc.6, 1612–1631 (2011).
[CrossRef] [PubMed]

Pritchard, E.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibiotics in silk and eliminating the cold chain,” Proc. Natl. Acad. Sci. U. S. A.109, 11981–11986 (2012).
[CrossRef] [PubMed]

Pritchard, E. M.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

Qu, Y.

Rativa, D.

Rebane, A.

Z. Suo, M. Drobizhev, C. W. Spangler, N. Christensson, and A. Rebane, “New fluorophores based on trifluorenylamine with very large intrinsic three-photon absorption cross sections,” Org. Lett.7, 4807–4810 (2005).
[CrossRef] [PubMed]

Rockwood, D. N.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc.6, 1612–1631 (2011).
[CrossRef] [PubMed]

Rosalie, J.

M. J. Malone, J. Rosalie, A. M. Miller, and B. Kohler, “Singlet excited-state lifetimes of cytosine derivatives measured by femtosecond transient absorption,” Photochem. Photobiol.77, 158–164 (2003).
[CrossRef] [PubMed]

Said, A.

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

Samoc, A.

Samoc, M.

Sassaroli, A.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

Siebert, S. M.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

Sionkowska, A.

A. Sionkowska and A. Planecka, “The influence of UV radiation on silk fibroin,” Polym. Degrad. Stab.96, 523–528 (2011).
[CrossRef]

Spangler, C. W.

Z. Suo, M. Drobizhev, C. W. Spangler, N. Christensson, and A. Rebane, “New fluorophores based on trifluorenylamine with very large intrinsic three-photon absorption cross sections,” Org. Lett.7, 4807–4810 (2005).
[CrossRef] [PubMed]

Suo, Z.

Z. Suo, M. Drobizhev, C. W. Spangler, N. Christensson, and A. Rebane, “New fluorophores based on trifluorenylamine with very large intrinsic three-photon absorption cross sections,” Org. Lett.7, 4807–4810 (2005).
[CrossRef] [PubMed]

Tao, H.

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials - a road to sustainable high technology,” Adv Mater.24, 2824–2837 (2012).
[CrossRef] [PubMed]

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

Tsai, I.

Tugushev, R. I.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc.112, 906–913 (2012).
[CrossRef]

Usmanov, T.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc.112, 906–913 (2012).
[CrossRef]

Valentin, T.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibiotics in silk and eliminating the cold chain,” Proc. Natl. Acad. Sci. U. S. A.109, 11981–11986 (2012).
[CrossRef] [PubMed]

Van Stryland, E.

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

Vartiainen, E.

V. P. Leppanen, T. J. Haring, T. Jaaskelainen, E. Vartiainen, S. Parkkinen, and J. P. S Parkkinen, “The intensity dependent refractive index change of photochromic proteins,” Opt. Commun.163, 189–192 (1999).
[CrossRef]

Wang, H.-T.

Wang, J.

Wang, X.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc.6, 1612–1631 (2011).
[CrossRef] [PubMed]

X. Wang, T. Yucel, Q. Lu, X. Hu, and D. L. Kaplan, “Silk nanospheres and microspheres from silk/pva blend films for drug delivery,” Biomaterials31, 1025–1035 (2010).
[CrossRef]

Wei, T.-H.

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

Wetlaufer, D. B.

D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem.17, 303–390 (1962).
[CrossRef]

Wong, C.

Yucel, T.

X. Wang, T. Yucel, Q. Lu, X. Hu, and D. L. Kaplan, “Silk nanospheres and microspheres from silk/pva blend films for drug delivery,” Biomaterials31, 1025–1035 (2010).
[CrossRef]

Yücel, T.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc.6, 1612–1631 (2011).
[CrossRef] [PubMed]

Zakery, A.

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330, 1–12 (2003).
[CrossRef]

Zhang, J.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibiotics in silk and eliminating the cold chain,” Proc. Natl. Acad. Sci. U. S. A.109, 11981–11986 (2012).
[CrossRef] [PubMed]

Adv Mater.

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials - a road to sustainable high technology,” Adv Mater.24, 2824–2837 (2012).
[CrossRef] [PubMed]

Adv. Protein Chem.

D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem.17, 303–390 (1962).
[CrossRef]

Biomaterials

X. Wang, T. Yucel, Q. Lu, X. Hu, and D. L. Kaplan, “Silk nanospheres and microspheres from silk/pva blend films for drug delivery,” Biomaterials31, 1025–1035 (2010).
[CrossRef]

Chem. Phys. Lett.

F. E. Hernández, K. D. Belfield, and I. Cohanoschi, “Three-photon absorption enhancement in a symmetrical charge transfer fluorene derivative,” Chem. Phys. Lett.391, 22–26 (2004).
[CrossRef]

Food Chem.

J. Cuq and J. Cheftel, “Tryptophan degradation during heat treatments: Part 1 The degradation of free tryptophan,” Food Chem.12, 1–14 (1983).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

J. Am. Chem. Soc.

J. M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc., 123, 10370–10378 (2001).
[PubMed]

J. Non-Cryst. Solids

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330, 1–12 (2003).
[CrossRef]

J. Opt. A Pure Appl. Opt.

R. A. Ganeev, “Nonlinear refraction and nonlinear absorption of various media,” J. Opt. A Pure Appl. Opt.7, 717–733 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

M. Drobizhev, A. Karotki, and M. Kruk, “Uncovering coherent domain structure in a series of π-conjugated dendrimers by simultaneous three-photon absorption,” J. Phys. Chem. B108, 4221–4226 (2004).
[CrossRef]

Macromol. Res.

P. Chen, H. S. Kim, C.-Y. Park, H.-S. Kim, I.-J. Chin, and H.-J. Jin, “pH-Triggered transition of silk fibroin from spherical micelles to nanofibrils in water,” Macromol. Res.16, 539–543 (2008).
[CrossRef]

Nat. Photonics

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2, 641–643 (2008).
[CrossRef]

Nat. Protoc.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc.6, 1612–1631 (2011).
[CrossRef] [PubMed]

Nature

H.-J. Jin and D. L. Kaplan, “Mechanism of silk processing in insects and spiders,” Nature424, 1057–1061 (2003).
[CrossRef] [PubMed]

Nucleic Acids Res.

The Uniprot Consortium, “Update on activities at the Universal Protein Resource (UniProt) in 2013,” Nucleic Acids Res.41, D43–D47 (2013).

Opt. Commun.

V. P. Leppanen, T. J. Haring, T. Jaaskelainen, E. Vartiainen, S. Parkkinen, and J. P. S Parkkinen, “The intensity dependent refractive index change of photochromic proteins,” Opt. Commun.163, 189–192 (1999).
[CrossRef]

Opt. Express

Opt. Spectrosc.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc.112, 906–913 (2012).
[CrossRef]

Org. Lett.

Z. Suo, M. Drobizhev, C. W. Spangler, N. Christensson, and A. Rebane, “New fluorophores based on trifluorenylamine with very large intrinsic three-photon absorption cross sections,” Org. Lett.7, 4807–4810 (2005).
[CrossRef] [PubMed]

Photochem. Photobiol.

M. J. Malone, J. Rosalie, A. M. Miller, and B. Kohler, “Singlet excited-state lifetimes of cytosine derivatives measured by femtosecond transient absorption,” Photochem. Photobiol.77, 158–164 (2003).
[CrossRef] [PubMed]

Polym. Degrad. Stab.

A. Sionkowska and A. Planecka, “The influence of UV radiation on silk fibroin,” Polym. Degrad. Stab.96, 523–528 (2011).
[CrossRef]

Proc. Natl. Acad. Sci. U. S. A.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibiotics in silk and eliminating the cold chain,” Proc. Natl. Acad. Sci. U. S. A.109, 11981–11986 (2012).
[CrossRef] [PubMed]

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U. S. A.109, 19584–19589 (2012).
[CrossRef] [PubMed]

Quantum Electron.

Y. Meshalkin, “Two-photon absorption cross sections of aromatic amino acids and proteins,” Quantum Electron.536, 536–538 (1996).
[CrossRef]

Other

J. Hsu, Multiple Comparisons: Theory and Methods (Chapman, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Open aperture Z-scan data from 100 kDa silk fibroin solution with theoretical best fit curve for two-photon absorption (dashed) and three-photon absorption (solid).

Fig. 2
Fig. 2

A) Normalized change in transmission for the solutions tested after subtracting the solvent. TRP is tryptophan in HCl, TYR is tyrosine in HCl. SF 10mb to SF 120mb indicate the length of time the silk was boiled during degumming. Error bars indicate 95% confidence intervals. B) Plot of 3PA cross section and silk molecular weight. Error bars indicate the 95% confidence intervals. Note the y-axis is plotted on a log scale.

Tables (1)

Tables Icon

Table 1 Summary of multiphoton absorption findings in silk and amino acid solutions. Cross sections are presented as the mean ± standard error.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T 2 ( x , Ψ 1 ) = ln ( 1 + ψ 1 ) / ψ 1
T 3 ( x , Ψ 2 ) = sinh 1 ( ψ 2 ) / ( ψ 2 )
σ 3 = β 2 N A d 0 10 3 ( h c λ ) 2

Metrics