Abstract

In order to generate high power laser radiation it is often necessary to combine multiple lasers into a single beam. The recent advances in high power spectral beam combining using multiplexed volume Bragg gratings recorded in photo-thermo-refractive glass are presented. The focus is on using multiple gratings recorded within the same volume to lower the complexity of the combining system. Combining of 420 W with 96% efficiency using a monolithic, multiplexed double grating recorded in PTR glass is demonstrated. A multiplexed quadruple grating that maintains high efficiency and good beam quality is demonstrated to pave a way for further scaling of combining channels.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron.11(3), 567–577 (2005).
    [CrossRef]
  2. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
    [CrossRef]
  3. V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, “Spectral beam combining of a broad-stripe diode laser array in an external cavity,” Opt. Lett.25(6), 405–407 (2000).
    [CrossRef] [PubMed]
  4. D. Drachenberg, I. Divliansky, G. Venus, V. Smirnov, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE7914, 79141F (2011).
    [CrossRef]
  5. S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B66(3), 339–345 (1998).
    [CrossRef]
  6. L. Glebov, “Photosensitive glass for phase hologram recording,” Glass Sci. Technol.71C, 85–90 (1998).
  7. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48(9), 2909–2947 (1969).
    [CrossRef]
  8. L. Glebov, “Fluorinated silicate glass for conventional and holographic optical elements,” Proc. SPIE6545, 654507 (2007).
    [CrossRef]
  9. D. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. Venus, and L. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE7580, 75801U (2010).
    [CrossRef]
  10. F. Ghiringhelli and M. N. Zervas, “Time delay distribution in Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(3), 036604 (2002).
    [CrossRef] [PubMed]
  11. B. Anderson, S. Kaim, G. Venus, J. Lumeau, V. Smirnov, B. Zeldovich, and L. Glebov, “Forced air cooling of volume Bragg gratings for spectral beam combining,” Proc. SPIE8601, 86013D (2013).
    [CrossRef]
  12. S. Tjörnhammar, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Thermal limitations of volume Bragg gratings used in lasers for spectral control,” J. Opt. Soc. Am. B30(6), 1402–1409 (2013).
    [CrossRef]

2013 (2)

B. Anderson, S. Kaim, G. Venus, J. Lumeau, V. Smirnov, B. Zeldovich, and L. Glebov, “Forced air cooling of volume Bragg gratings for spectral beam combining,” Proc. SPIE8601, 86013D (2013).
[CrossRef]

S. Tjörnhammar, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Thermal limitations of volume Bragg gratings used in lasers for spectral control,” J. Opt. Soc. Am. B30(6), 1402–1409 (2013).
[CrossRef]

2011 (1)

D. Drachenberg, I. Divliansky, G. Venus, V. Smirnov, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE7914, 79141F (2011).
[CrossRef]

2010 (1)

D. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. Venus, and L. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE7580, 75801U (2010).
[CrossRef]

2009 (1)

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

2007 (1)

L. Glebov, “Fluorinated silicate glass for conventional and holographic optical elements,” Proc. SPIE6545, 654507 (2007).
[CrossRef]

2005 (1)

T. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron.11(3), 567–577 (2005).
[CrossRef]

2002 (1)

F. Ghiringhelli and M. N. Zervas, “Time delay distribution in Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(3), 036604 (2002).
[CrossRef] [PubMed]

2000 (1)

1998 (2)

S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B66(3), 339–345 (1998).
[CrossRef]

L. Glebov, “Photosensitive glass for phase hologram recording,” Glass Sci. Technol.71C, 85–90 (1998).

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48(9), 2909–2947 (1969).
[CrossRef]

Anderson, B.

B. Anderson, S. Kaim, G. Venus, J. Lumeau, V. Smirnov, B. Zeldovich, and L. Glebov, “Forced air cooling of volume Bragg gratings for spectral beam combining,” Proc. SPIE8601, 86013D (2013).
[CrossRef]

Andrusyak, O.

D. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. Venus, and L. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE7580, 75801U (2010).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Breer, S.

S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B66(3), 339–345 (1998).
[CrossRef]

Buse, K.

S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B66(3), 339–345 (1998).
[CrossRef]

Choi, H. K.

Cohanoschi, I.

D. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. Venus, and L. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE7580, 75801U (2010).
[CrossRef]

Cook, C. C.

Daneu, V.

Divliansky, I.

D. Drachenberg, I. Divliansky, G. Venus, V. Smirnov, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE7914, 79141F (2011).
[CrossRef]

D. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. Venus, and L. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE7580, 75801U (2010).
[CrossRef]

Drachenberg, D.

D. Drachenberg, I. Divliansky, G. Venus, V. Smirnov, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE7914, 79141F (2011).
[CrossRef]

D. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. Venus, and L. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE7580, 75801U (2010).
[CrossRef]

Fan, T.

T. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron.11(3), 567–577 (2005).
[CrossRef]

Fan, T. Y.

Ghiringhelli, F.

F. Ghiringhelli and M. N. Zervas, “Time delay distribution in Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(3), 036604 (2002).
[CrossRef] [PubMed]

Glebov, L.

B. Anderson, S. Kaim, G. Venus, J. Lumeau, V. Smirnov, B. Zeldovich, and L. Glebov, “Forced air cooling of volume Bragg gratings for spectral beam combining,” Proc. SPIE8601, 86013D (2013).
[CrossRef]

D. Drachenberg, I. Divliansky, G. Venus, V. Smirnov, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE7914, 79141F (2011).
[CrossRef]

D. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. Venus, and L. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE7580, 75801U (2010).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

L. Glebov, “Fluorinated silicate glass for conventional and holographic optical elements,” Proc. SPIE6545, 654507 (2007).
[CrossRef]

L. Glebov, “Photosensitive glass for phase hologram recording,” Glass Sci. Technol.71C, 85–90 (1998).

Jacobsson, B.

Kaim, S.

B. Anderson, S. Kaim, G. Venus, J. Lumeau, V. Smirnov, B. Zeldovich, and L. Glebov, “Forced air cooling of volume Bragg gratings for spectral beam combining,” Proc. SPIE8601, 86013D (2013).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48(9), 2909–2947 (1969).
[CrossRef]

Laurell, F.

Lumeau, J.

B. Anderson, S. Kaim, G. Venus, J. Lumeau, V. Smirnov, B. Zeldovich, and L. Glebov, “Forced air cooling of volume Bragg gratings for spectral beam combining,” Proc. SPIE8601, 86013D (2013).
[CrossRef]

Mokhun, O.

D. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. Venus, and L. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE7580, 75801U (2010).
[CrossRef]

Pasiskevicius, V.

Podvyaznyy, A.

D. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. Venus, and L. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE7580, 75801U (2010).
[CrossRef]

Rotar, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Sanchez, A.

Smirnov, V.

B. Anderson, S. Kaim, G. Venus, J. Lumeau, V. Smirnov, B. Zeldovich, and L. Glebov, “Forced air cooling of volume Bragg gratings for spectral beam combining,” Proc. SPIE8601, 86013D (2013).
[CrossRef]

D. Drachenberg, I. Divliansky, G. Venus, V. Smirnov, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE7914, 79141F (2011).
[CrossRef]

D. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. Venus, and L. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE7580, 75801U (2010).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Tjörnhammar, S.

Turner, G. W.

Venus, G.

B. Anderson, S. Kaim, G. Venus, J. Lumeau, V. Smirnov, B. Zeldovich, and L. Glebov, “Forced air cooling of volume Bragg gratings for spectral beam combining,” Proc. SPIE8601, 86013D (2013).
[CrossRef]

D. Drachenberg, I. Divliansky, G. Venus, V. Smirnov, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE7914, 79141F (2011).
[CrossRef]

D. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. Venus, and L. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE7580, 75801U (2010).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Zeldovich, B.

B. Anderson, S. Kaim, G. Venus, J. Lumeau, V. Smirnov, B. Zeldovich, and L. Glebov, “Forced air cooling of volume Bragg gratings for spectral beam combining,” Proc. SPIE8601, 86013D (2013).
[CrossRef]

Zervas, M. N.

F. Ghiringhelli and M. N. Zervas, “Time delay distribution in Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(3), 036604 (2002).
[CrossRef] [PubMed]

Appl. Phys. B (1)

S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B66(3), 339–345 (1998).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48(9), 2909–2947 (1969).
[CrossRef]

Glass Sci. Technol. (1)

L. Glebov, “Photosensitive glass for phase hologram recording,” Glass Sci. Technol.71C, 85–90 (1998).

IEEE J. Sel. Top. Quantum Electron. (2)

T. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron.11(3), 567–577 (2005).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

F. Ghiringhelli and M. N. Zervas, “Time delay distribution in Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(3), 036604 (2002).
[CrossRef] [PubMed]

Proc. SPIE (4)

B. Anderson, S. Kaim, G. Venus, J. Lumeau, V. Smirnov, B. Zeldovich, and L. Glebov, “Forced air cooling of volume Bragg gratings for spectral beam combining,” Proc. SPIE8601, 86013D (2013).
[CrossRef]

D. Drachenberg, I. Divliansky, G. Venus, V. Smirnov, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE7914, 79141F (2011).
[CrossRef]

L. Glebov, “Fluorinated silicate glass for conventional and holographic optical elements,” Proc. SPIE6545, 654507 (2007).
[CrossRef]

D. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. Venus, and L. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE7580, 75801U (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of three beam combining by means of a 2x RBG where two beams are diffracted while a third out of resonance beam is transmitted.

Fig. 2
Fig. 2

The reflection spectra of the two individual gratings of a 2x RBG. Measurement is produced by probing with a low power tunable laser along the combining arm (central arrow in Fig. 1) and power meters placed in input arms (top and bottom arrows in Fig. 1). Efficiency of each grating is >99% with bandwidth (FWHM) of 215 pm ± 10 pm.

Fig. 3
Fig. 3

The housing for thermally controlling the multiplexed RBG during high power beam combining experiments.

Fig. 4
Fig. 4

Distribution of power inside of a volume reflecting grating along direction of beam propagation. The 5.5-mm-thick grating with 230 ppm refractive index modulation is designed to produce a reflectance of 99.8% at 1064 nm. This simulation shows that 90% of the power is localized within the first quarter of the grating.

Fig. 5
Fig. 5

A 4x multiplexed reflecting grating for spectral beam combining of four laser channels with wavelength separation of 2 nm.

Fig. 6
Fig. 6

The reflection spectra of the 4x multiplexed volume reflecting Bragg grating with thickness of 6.5 mm. Measurement is obtained by illumination by a tunable laser source along the direction of the central arrow in Fig. 5 and power meters placed in input arms (arrows marked with wavelengths in Fig. 5).

Tables (2)

Tables Icon

Table 1 Summary of beam combining results at high power

Tables Icon

Table 2 M2 of beams reflected from a 4x RBG

Metrics