Abstract

We demonstrate spontaneous emission rate enhancement and saturable absorption of cadmium selenide colloidal quantum dots coupled to a nanobeam photonic crystal cavity. We perform time-resolved lifetime measurements and observe an average enhancement of 4.6 for the spontaneous emission rate of quantum dots located at the cavity as compared to those located on an unpatterned surface. We also demonstrate that the cavity linewidth narrows with increasing pump intensity due to quantum dot saturable absorption.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Mashford, M. Stevenson, and Z. Popovic, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7, 407–412 (2013).
    [CrossRef]
  2. L. Qian, Y. Zheng, J. Xue, and P. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5, 543–548 (2011).
    [CrossRef]
  3. P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater.17, 1131–1136 (2005).
    [CrossRef]
  4. B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett.89, 191124 (2006).
    [CrossRef]
  5. H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett.80, 4614–4616 (2002).
    [CrossRef]
  6. C. M. Savage and H. J. Carmichael, “Single-atom optical bistability,” IEEE J. Quantum Electron.24, 1495–1498 (1988).
    [CrossRef]
  7. H. M. Gibbs, S. L. Mccall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett.35, 451–453 (1979).
    [CrossRef]
  8. D. A. B. Miller, S. D. Smith, and C. T. Seaton, “Optical bistability in semiconductors,” IEEE J. Quantum Electron.17, 312–317 (1981).
    [CrossRef]
  9. D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room temperature optical nonlinearity in GaAs/Ga1−x Alx As multiple quantum well structures,” Appl. Phys. Lett.41, 679–681 (1982).
    [CrossRef]
  10. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express12, 6606–6614 (2006).
    [CrossRef]
  11. A. Shinya, S. Matsuo, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16, 19382–19387 (2008).
    [CrossRef]
  12. D. Sridharan and E. Waks, “All-optical switch using quantum-dot saturable absorbers in a DBR microcavity,” IEEE J. Quantum Electron.47, 31–39 (2011).
    [CrossRef]
  13. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II–VI semiconductor quantum dot–polymer composites,” Adv. Mater.12, 1102–1105 (2000).
    [CrossRef]
  14. L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc.124, 2049–2055 (2002).
    [CrossRef] [PubMed]
  15. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271, 933–937 (1996).
    [CrossRef]
  16. V. I. Klimov, “From fundamental photophysics to multicolor lasing,” Los Alamos Science28, 214–220 (2003).
  17. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  18. J. Gerard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. Appl. Phys.90, 283–327 (2003).
  19. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007).
    [CrossRef]
  20. G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
    [CrossRef]
  21. M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett.81, 2680–2682 (2002).
    [CrossRef]
  22. D. D. T. Yoshie, O. B. Shchekin, H. Chen, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett.38, 967–968 (2002).
    [CrossRef]
  23. H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84, 1067–1069 (2004).
    [CrossRef]
  24. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
    [CrossRef]
  25. S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
    [CrossRef] [PubMed]
  26. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett.90, 151102 (2007).
    [CrossRef]
  27. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site- controlled quantum-wire active medium,” Opt. Express17, 18178–18183 (2009).
    [CrossRef] [PubMed]
  28. S. Noda, “Photonic crystal lasers – ultimate nanolasers and broad-area coherent lasers,” J. Opt. Soc. Am. B27, 1–8 (2010).
    [CrossRef]
  29. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E66, 055501 (2002).
    [CrossRef]
  30. X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
    [CrossRef]
  31. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
    [CrossRef]
  32. R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
    [CrossRef] [PubMed]
  33. L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260–264 (2008).
    [CrossRef]
  34. F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett.35, 1509–1511 (2010).
    [CrossRef] [PubMed]
  35. A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng.87, 1435–1438 (2010).
    [CrossRef]
  36. F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, “Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices,” Photonics Nanostruct. Fundam. Appl.10, 319–324 (2012).
    [CrossRef]
  37. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2, 515–520 (2007).
    [CrossRef]
  38. S. Shukla, R. Kumar, A. Baev, A. S. L. Gomes, and P. N. Prasad, “Control of spontaneous emission of CdSe nanorods in a multirefringent triangular lattice photonic crystal,” J. Phys. Chem. Lett.1, 1437–1441 (2010).
    [CrossRef]
  39. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
    [CrossRef] [PubMed]
  40. M. W. Mccutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16, 408–413 (2008).
    [CrossRef]
  41. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express17, 3802–3817 (2009).
    [CrossRef] [PubMed]
  42. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19, 18529–18542 (2011).
    [CrossRef] [PubMed]
  43. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
    [CrossRef]
  44. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
    [CrossRef] [PubMed]
  45. M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett.36, 421–423 (2011).
    [CrossRef] [PubMed]
  46. Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96, 031107 (2010).
    [CrossRef]
  47. A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett.11, 5213–5218 (2011).
    [CrossRef] [PubMed]
  48. G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, “Fluorescence decay time of single semiconductor nanocrystals,” Phys. Rev. Lett.88, 1–4 (2002).
    [CrossRef]
  49. B. Fisher and H. Eisler, “Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes,” J. Phys. Chem. B108, 143–148 (2004).
    [CrossRef]
  50. I. Nikolaev, P. Lodahl, A. van Driel, A. Koenderink, and W. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B75, 115302 (2007).
    [CrossRef]
  51. A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 1–8 (2007).
    [CrossRef]
  52. B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett.329, 399–404 (2000).
    [CrossRef]
  53. X. Brokmann, L. Coolen, M. Dahan, and J. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett.93, 107403 (2004).
    [CrossRef] [PubMed]
  54. X. Brokmann, L. Coolen, J. Hermier, and M. Dahan, “Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface,” Chem. Phys.318, 91–98 (2005).
    [CrossRef]
  55. S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies : Towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89, 186802 (2002).
    [CrossRef]
  56. N. de Leon, B. Shields, C. Yu, D. Englund, A. Akimov, M. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett.108, 1–5 (2012).
    [CrossRef]
  57. R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett.94, 123101 (2009).
    [CrossRef]
  58. M. Barth, J. Kouba, J. Stingl, B. Löchel, and O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express15, 17231–40 (2007).
    [CrossRef] [PubMed]
  59. W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B105, 8281–8284 (2001).
    [CrossRef]
  60. C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100, 111111 (2012).
    [CrossRef]
  61. P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71, 1595–1597 (1997).
    [CrossRef]
  62. P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010), Chap. 5.
    [CrossRef]
  63. S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Power broadening of the exciton linewidth in a single In-GaAs/GaAs quantum dot,” Appl. Phys. Lett.85, 4202 (2004).
    [CrossRef]

2013 (1)

B. Mashford, M. Stevenson, and Z. Popovic, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7, 407–412 (2013).
[CrossRef]

2012 (4)

F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, “Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices,” Photonics Nanostruct. Fundam. Appl.10, 319–324 (2012).
[CrossRef]

N. de Leon, B. Shields, C. Yu, D. Englund, A. Akimov, M. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett.108, 1–5 (2012).
[CrossRef]

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100, 111111 (2012).
[CrossRef]

2011 (5)

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett.36, 421–423 (2011).
[CrossRef] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19, 18529–18542 (2011).
[CrossRef] [PubMed]

A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett.11, 5213–5218 (2011).
[CrossRef] [PubMed]

L. Qian, Y. Zheng, J. Xue, and P. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5, 543–548 (2011).
[CrossRef]

D. Sridharan and E. Waks, “All-optical switch using quantum-dot saturable absorbers in a DBR microcavity,” IEEE J. Quantum Electron.47, 31–39 (2011).
[CrossRef]

2010 (6)

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96, 031107 (2010).
[CrossRef]

S. Shukla, R. Kumar, A. Baev, A. S. L. Gomes, and P. N. Prasad, “Control of spontaneous emission of CdSe nanorods in a multirefringent triangular lattice photonic crystal,” J. Phys. Chem. Lett.1, 1437–1441 (2010).
[CrossRef]

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng.87, 1435–1438 (2010).
[CrossRef]

S. Noda, “Photonic crystal lasers – ultimate nanolasers and broad-area coherent lasers,” J. Opt. Soc. Am. B27, 1–8 (2010).
[CrossRef]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett.35, 1509–1511 (2010).
[CrossRef] [PubMed]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

2009 (4)

R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett.94, 123101 (2009).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express17, 3802–3817 (2009).
[CrossRef] [PubMed]

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site- controlled quantum-wire active medium,” Opt. Express17, 18178–18183 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

2008 (3)

A. Shinya, S. Matsuo, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16, 19382–19387 (2008).
[CrossRef]

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260–264 (2008).
[CrossRef]

M. W. Mccutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16, 408–413 (2008).
[CrossRef]

2007 (7)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2, 515–520 (2007).
[CrossRef]

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett.90, 151102 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007).
[CrossRef]

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

I. Nikolaev, P. Lodahl, A. van Driel, A. Koenderink, and W. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B75, 115302 (2007).
[CrossRef]

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 1–8 (2007).
[CrossRef]

M. Barth, J. Kouba, J. Stingl, B. Löchel, and O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express15, 17231–40 (2007).
[CrossRef] [PubMed]

2006 (4)

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express12, 6606–6614 (2006).
[CrossRef]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett.89, 191124 (2006).
[CrossRef]

2005 (2)

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater.17, 1131–1136 (2005).
[CrossRef]

X. Brokmann, L. Coolen, J. Hermier, and M. Dahan, “Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface,” Chem. Phys.318, 91–98 (2005).
[CrossRef]

2004 (5)

B. Fisher and H. Eisler, “Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes,” J. Phys. Chem. B108, 143–148 (2004).
[CrossRef]

X. Brokmann, L. Coolen, M. Dahan, and J. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett.93, 107403 (2004).
[CrossRef] [PubMed]

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Power broadening of the exciton linewidth in a single In-GaAs/GaAs quantum dot,” Appl. Phys. Lett.85, 4202 (2004).
[CrossRef]

H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84, 1067–1069 (2004).
[CrossRef]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

2003 (2)

J. Gerard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. Appl. Phys.90, 283–327 (2003).

V. I. Klimov, “From fundamental photophysics to multicolor lasing,” Los Alamos Science28, 214–220 (2003).

2002 (7)

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc.124, 2049–2055 (2002).
[CrossRef] [PubMed]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett.81, 2680–2682 (2002).
[CrossRef]

D. D. T. Yoshie, O. B. Shchekin, H. Chen, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett.38, 967–968 (2002).
[CrossRef]

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, “Fluorescence decay time of single semiconductor nanocrystals,” Phys. Rev. Lett.88, 1–4 (2002).
[CrossRef]

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett.80, 4614–4616 (2002).
[CrossRef]

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies : Towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89, 186802 (2002).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E66, 055501 (2002).
[CrossRef]

2001 (1)

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B105, 8281–8284 (2001).
[CrossRef]

2000 (2)

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett.329, 399–404 (2000).
[CrossRef]

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II–VI semiconductor quantum dot–polymer composites,” Adv. Mater.12, 1102–1105 (2000).
[CrossRef]

1997 (2)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71, 1595–1597 (1997).
[CrossRef]

1996 (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271, 933–937 (1996).
[CrossRef]

1991 (1)

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

1988 (1)

C. M. Savage and H. J. Carmichael, “Single-atom optical bistability,” IEEE J. Quantum Electron.24, 1495–1498 (1988).
[CrossRef]

1982 (1)

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room temperature optical nonlinearity in GaAs/Ga1−x Alx As multiple quantum well structures,” Appl. Phys. Lett.41, 679–681 (1982).
[CrossRef]

1981 (1)

D. A. B. Miller, S. D. Smith, and C. T. Seaton, “Optical bistability in semiconductors,” IEEE J. Quantum Electron.17, 312–317 (1981).
[CrossRef]

1979 (1)

H. M. Gibbs, S. L. Mccall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett.35, 451–453 (1979).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Akimov, A.

N. de Leon, B. Shields, C. Yu, D. Englund, A. Akimov, M. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett.108, 1–5 (2012).
[CrossRef]

Alivisatos, A. P.

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271, 933–937 (1996).
[CrossRef]

Alivisatos, P.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett.329, 399–404 (2000).
[CrossRef]

Altug, H.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Arakawa, Y.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260–264 (2008).
[CrossRef]

Arnold, C.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100, 111111 (2012).
[CrossRef]

Asakawa, K.

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007).
[CrossRef]

Atlasov, K. A.

Atwater, H.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett.89, 191124 (2006).
[CrossRef]

Babinec, T.

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Baev, A.

S. Shukla, R. Kumar, A. Baev, A. S. L. Gomes, and P. N. Prasad, “Control of spontaneous emission of CdSe nanorods in a multirefringent triangular lattice photonic crystal,” J. Phys. Chem. Lett.1, 1437–1441 (2010).
[CrossRef]

Barth, M.

Bawendi, M. G.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater.17, 1131–1136 (2005).
[CrossRef]

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett.80, 4614–4616 (2002).
[CrossRef]

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II–VI semiconductor quantum dot–polymer composites,” Adv. Mater.12, 1102–1105 (2000).
[CrossRef]

Bechtel, H. A.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett.329, 399–404 (2000).
[CrossRef]

Benson, O.

Beveratos, A.

R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett.94, 123101 (2009).
[CrossRef]

Bichler, M.

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Power broadening of the exciton linewidth in a single In-GaAs/GaAs quantum dot,” Appl. Phys. Lett.85, 4202 (2004).
[CrossRef]

Bjork, G.

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

Bohnenberger, J.

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, “Fluorescence decay time of single semiconductor nanocrystals,” Phys. Rev. Lett.88, 1–4 (2002).
[CrossRef]

Bol, A. A.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B105, 8281–8284 (2001).
[CrossRef]

Borrelli, N. F.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71, 1595–1597 (1997).
[CrossRef]

Bose, R.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Braive, R.

R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett.94, 123101 (2009).
[CrossRef]

Bramati, A.

F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, “Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices,” Photonics Nanostruct. Fundam. Appl.10, 319–324 (2012).
[CrossRef]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett.35, 1509–1511 (2010).
[CrossRef] [PubMed]

Brokmann, X.

X. Brokmann, L. Coolen, J. Hermier, and M. Dahan, “Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface,” Chem. Phys.318, 91–98 (2005).
[CrossRef]

X. Brokmann, L. Coolen, M. Dahan, and J. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett.93, 107403 (2004).
[CrossRef] [PubMed]

Butty, J.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71, 1595–1597 (1997).
[CrossRef]

Calic, M.

Camacho, R.

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express17, 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

Carbone, L.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260–264 (2008).
[CrossRef]

Carmichael, H. J.

C. M. Savage and H. J. Carmichael, “Single-atom optical bistability,” IEEE J. Quantum Electron.24, 1495–1498 (1988).
[CrossRef]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express17, 3802–3817 (2009).
[CrossRef] [PubMed]

Chan, Y.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater.17, 1131–1136 (2005).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room temperature optical nonlinearity in GaAs/Ga1−x Alx As multiple quantum well structures,” Appl. Phys. Lett.41, 679–681 (1982).
[CrossRef]

Chen, H.

D. D. T. Yoshie, O. B. Shchekin, H. Chen, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett.38, 967–968 (2002).
[CrossRef]

Chen, Y.

A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett.11, 5213–5218 (2011).
[CrossRef] [PubMed]

Choi, Y.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2, 515–520 (2007).
[CrossRef]

Cingolani, R.

F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, “Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices,” Photonics Nanostruct. Fundam. Appl.10, 319–324 (2012).
[CrossRef]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett.35, 1509–1511 (2010).
[CrossRef] [PubMed]

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260–264 (2008).
[CrossRef]

Coolen, L.

X. Brokmann, L. Coolen, J. Hermier, and M. Dahan, “Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface,” Chem. Phys.318, 91–98 (2005).
[CrossRef]

X. Brokmann, L. Coolen, M. Dahan, and J. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett.93, 107403 (2004).
[CrossRef] [PubMed]

Crooker, S. A.

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies : Towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89, 186802 (2002).
[CrossRef]

Cunningham, B. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2, 515–520 (2007).
[CrossRef]

Dahan, M.

X. Brokmann, L. Coolen, J. Hermier, and M. Dahan, “Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface,” Chem. Phys.318, 91–98 (2005).
[CrossRef]

X. Brokmann, L. Coolen, M. Dahan, and J. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett.93, 107403 (2004).
[CrossRef] [PubMed]

de Leon, N.

N. de Leon, B. Shields, C. Yu, D. Englund, A. Akimov, M. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett.108, 1–5 (2012).
[CrossRef]

de Mello Donegá, C.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B105, 8281–8284 (2001).
[CrossRef]

De Vittorio, M.

F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, “Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices,” Photonics Nanostruct. Fundam. Appl.10, 319–324 (2012).
[CrossRef]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett.35, 1509–1511 (2010).
[CrossRef] [PubMed]

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng.87, 1435–1438 (2010).
[CrossRef]

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260–264 (2008).
[CrossRef]

Deotare, P.

Dwir, B.

Eberly, J. H.

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010), Chap. 5.
[CrossRef]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express17, 3802–3817 (2009).
[CrossRef] [PubMed]

Eilenberger, D. J.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room temperature optical nonlinearity in GaAs/Ga1−x Alx As multiple quantum well structures,” Appl. Phys. Lett.41, 679–681 (1982).
[CrossRef]

Eisler, H.

B. Fisher and H. Eisler, “Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes,” J. Phys. Chem. B108, 143–148 (2004).
[CrossRef]

Eisler, H.-J.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett.80, 4614–4616 (2002).
[CrossRef]

Ellis, B.

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett.90, 151102 (2007).
[CrossRef]

Englund, D.

N. de Leon, B. Shields, C. Yu, D. Englund, A. Akimov, M. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett.108, 1–5 (2012).
[CrossRef]

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett.90, 151102 (2007).
[CrossRef]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

Epifani, G.

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng.87, 1435–1438 (2010).
[CrossRef]

Ester, P.

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Power broadening of the exciton linewidth in a single In-GaAs/GaAs quantum dot,” Appl. Phys. Lett.85, 4202 (2004).
[CrossRef]

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Fink, Y.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E66, 055501 (2002).
[CrossRef]

Fiore, A.

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng.87, 1435–1438 (2010).
[CrossRef]

Fisher, B.

B. Fisher and H. Eisler, “Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes,” J. Phys. Chem. B108, 143–148 (2004).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Frederix, P. L. T. M.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B105, 8281–8284 (2001).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007).
[CrossRef]

Fushman, I.

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett.90, 151102 (2007).
[CrossRef]

Galland, C.

A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett.11, 5213–5218 (2011).
[CrossRef] [PubMed]

Gallo, P.

Ganesh, N.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2, 515–520 (2007).
[CrossRef]

Gerard, J.

J. Gerard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. Appl. Phys.90, 283–327 (2003).

Gerion, D.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett.329, 399–404 (2000).
[CrossRef]

Gerritsen, H. C.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B105, 8281–8284 (2001).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, S. L. Mccall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett.35, 451–453 (1979).
[CrossRef]

Gogna, P.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett.81, 2680–2682 (2002).
[CrossRef]

Gomes, A. S. L.

S. Shukla, R. Kumar, A. Baev, A. S. L. Gomes, and P. N. Prasad, “Control of spontaneous emission of CdSe nanorods in a multirefringent triangular lattice photonic crystal,” J. Phys. Chem. Lett.1, 1437–1441 (2010).
[CrossRef]

Gong, Y.

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96, 031107 (2010).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room temperature optical nonlinearity in GaAs/Ga1−x Alx As multiple quantum well structures,” Appl. Phys. Lett.41, 679–681 (1982).
[CrossRef]

H. M. Gibbs, S. L. Mccall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett.35, 451–453 (1979).
[CrossRef]

Grande, M.

F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, “Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices,” Photonics Nanostruct. Fundam. Appl.10, 319–324 (2012).
[CrossRef]

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng.87, 1435–1438 (2010).
[CrossRef]

Guerreiro, P. T.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71, 1595–1597 (1997).
[CrossRef]

Heine, J. R.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II–VI semiconductor quantum dot–polymer composites,” Adv. Mater.12, 1102–1105 (2000).
[CrossRef]

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Hermier, J.

X. Brokmann, L. Coolen, J. Hermier, and M. Dahan, “Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface,” Chem. Phys.318, 91–98 (2005).
[CrossRef]

X. Brokmann, L. Coolen, M. Dahan, and J. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett.93, 107403 (2004).
[CrossRef] [PubMed]

Hollingsworth, J. A.

A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett.11, 5213–5218 (2011).
[CrossRef] [PubMed]

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies : Towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89, 186802 (2002).
[CrossRef]

Holloway, P.

L. Qian, Y. Zheng, J. Xue, and P. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5, 543–548 (2011).
[CrossRef]

Hostein, R.

R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett.94, 123101 (2009).
[CrossRef]

Htoon, H.

A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett.11, 5213–5218 (2011).
[CrossRef] [PubMed]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Husko, C.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

Ibanescu, M.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E66, 055501 (2002).
[CrossRef]

Ikeda, N.

Inoue, K.

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Irman, A.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Ishikawa, H.

Iwamoto, S.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260–264 (2008).
[CrossRef]

Jabbour, G. E.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71, 1595–1597 (1997).
[CrossRef]

Jensen, K. F.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II–VI semiconductor quantum dot–polymer composites,” Adv. Mater.12, 1102–1105 (2000).
[CrossRef]

Joannopoulos, J. D.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E66, 055501 (2002).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Johnson, S. G.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E66, 055501 (2002).
[CrossRef]

Kakitsuka, T.

Kanamoto, K.

Kapon, E.

Karlsson, K. F.

Khan, M.

Kim, H.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

Kim, S.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett.89, 191124 (2006).
[CrossRef]

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Kitamura, M.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260–264 (2008).
[CrossRef]

Klimov, V.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett.80, 4614–4616 (2002).
[CrossRef]

Klimov, V. I.

A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett.11, 5213–5218 (2011).
[CrossRef] [PubMed]

V. I. Klimov, “From fundamental photophysics to multicolor lasing,” Los Alamos Science28, 214–220 (2003).

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies : Towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89, 186802 (2002).
[CrossRef]

Koenderink, A.

I. Nikolaev, P. Lodahl, A. van Driel, A. Koenderink, and W. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B75, 115302 (2007).
[CrossRef]

Kouba, J.

Krebs, O.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100, 111111 (2012).
[CrossRef]

Kumar, R.

S. Shukla, R. Kumar, A. Baev, A. S. L. Gomes, and P. N. Prasad, “Control of spontaneous emission of CdSe nanorods in a multirefringent triangular lattice photonic crystal,” J. Phys. Chem. Lett.1, 1437–1441 (2010).
[CrossRef]

Kuramochi, E.

Kuramoti, E.

H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84, 1067–1069 (2004).
[CrossRef]

Kwong, D.-L.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

Lanco, L.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100, 111111 (2012).
[CrossRef]

Larqué, M.

R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett.94, 123101 (2009).
[CrossRef]

Le Gratiet, L.

R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett.94, 123101 (2009).
[CrossRef]

Lee, J.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II–VI semiconductor quantum dot–polymer composites,” Adv. Mater.12, 1102–1105 (2000).
[CrossRef]

Lee, K.-H.

R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett.94, 123101 (2009).
[CrossRef]

Lemaître, A.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100, 111111 (2012).
[CrossRef]

Löchel, B.

Lodahl, P.

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 1–8 (2007).
[CrossRef]

I. Nikolaev, P. Lodahl, A. van Driel, A. Koenderink, and W. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B75, 115302 (2007).
[CrossRef]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Loncar, M.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19, 18529–18542 (2011).
[CrossRef] [PubMed]

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett.36, 421–423 (2011).
[CrossRef] [PubMed]

M. W. Mccutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16, 408–413 (2008).
[CrossRef]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett.81, 2680–2682 (2002).
[CrossRef]

Loo, V.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100, 111111 (2012).
[CrossRef]

Lounis, B.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett.329, 399–404 (2000).
[CrossRef]

Lukin, M.

N. de Leon, B. Shields, C. Yu, D. Englund, A. Akimov, M. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett.108, 1–5 (2012).
[CrossRef]

Malko, A. V.

A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett.11, 5213–5218 (2011).
[CrossRef] [PubMed]

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2, 515–520 (2007).
[CrossRef]

Manna, L.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260–264 (2008).
[CrossRef]

Martiradonna, L.

F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, “Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices,” Photonics Nanostruct. Fundam. Appl.10, 319–324 (2012).
[CrossRef]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett.35, 1509–1511 (2010).
[CrossRef] [PubMed]

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng.87, 1435–1438 (2010).
[CrossRef]

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260–264 (2008).
[CrossRef]

Mashford, B.

B. Mashford, M. Stevenson, and Z. Popovic, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7, 407–412 (2013).
[CrossRef]

Mathias, P. C.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2, 515–520 (2007).
[CrossRef]

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

A. Shinya, S. Matsuo, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16, 19382–19387 (2008).
[CrossRef]

Mccall, S. L.

H. M. Gibbs, S. L. Mccall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett.35, 451–453 (1979).
[CrossRef]

McCutcheon, M. W.

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett.36, 421–423 (2011).
[CrossRef] [PubMed]

M. W. Mccutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16, 408–413 (2008).
[CrossRef]

Meijerink, A.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B105, 8281–8284 (2001).
[CrossRef]

Mews, A.

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, “Fluorescence decay time of single semiconductor nanocrystals,” Phys. Rev. Lett.88, 1–4 (2002).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room temperature optical nonlinearity in GaAs/Ga1−x Alx As multiple quantum well structures,” Appl. Phys. Lett.41, 679–681 (1982).
[CrossRef]

D. A. B. Miller, S. D. Smith, and C. T. Seaton, “Optical bistability in semiconductors,” IEEE J. Quantum Electron.17, 312–317 (1981).
[CrossRef]

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010), Chap. 5.
[CrossRef]

Min, B.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett.89, 191124 (2006).
[CrossRef]

Moerner, W. E.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett.329, 399–404 (2000).
[CrossRef]

Nakamura, H.

Nakamura, Y.

Nikolaev, I.

I. Nikolaev, P. Lodahl, A. van Driel, A. Koenderink, and W. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B75, 115302 (2007).
[CrossRef]

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 1–8 (2007).
[CrossRef]

Nikolaev, I. S.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Nocera, D. G.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater.17, 1131–1136 (2005).
[CrossRef]

Noda, S.

S. Noda, “Photonic crystal lasers – ultimate nanolasers and broad-area coherent lasers,” J. Opt. Soc. Am. B27, 1–8 (2010).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007).
[CrossRef]

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

A. Shinya, S. Matsuo, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16, 19382–19387 (2008).
[CrossRef]

H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84, 1067–1069 (2004).
[CrossRef]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

Ohkouchi, S.

Okamoto, K.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett.89, 191124 (2006).
[CrossRef]

Overgaag, K.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Painter, O.

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express17, 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

Park, H.

N. de Leon, B. Shields, C. Yu, D. Englund, A. Akimov, M. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett.108, 1–5 (2012).
[CrossRef]

Park, Y.-S.

A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett.11, 5213–5218 (2011).
[CrossRef] [PubMed]

Passaseo, A.

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng.87, 1435–1438 (2010).
[CrossRef]

Passner, A.

H. M. Gibbs, S. L. Mccall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett.35, 451–453 (1979).
[CrossRef]

Peng, X.

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc.124, 2049–2055 (2002).
[CrossRef] [PubMed]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Peyghambarian, N.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71, 1595–1597 (1997).
[CrossRef]

Pisanello, F.

F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, “Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices,” Photonics Nanostruct. Fundam. Appl.10, 319–324 (2012).
[CrossRef]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett.35, 1509–1511 (2010).
[CrossRef] [PubMed]

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng.87, 1435–1438 (2010).
[CrossRef]

Pompa, P.

F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, “Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices,” Photonics Nanostruct. Fundam. Appl.10, 319–324 (2012).
[CrossRef]

Popovic, Z.

B. Mashford, M. Stevenson, and Z. Popovic, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7, 407–412 (2013).
[CrossRef]

Potapova, I.

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, “Fluorescence decay time of single semiconductor nanocrystals,” Phys. Rev. Lett.88, 1–4 (2002).
[CrossRef]

Prasad, P. N.

S. Shukla, R. Kumar, A. Baev, A. S. L. Gomes, and P. N. Prasad, “Control of spontaneous emission of CdSe nanorods in a multirefringent triangular lattice photonic crystal,” J. Phys. Chem. Lett.1, 1437–1441 (2010).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Qian, L.

L. Qian, Y. Zheng, J. Xue, and P. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5, 543–548 (2011).
[CrossRef]

Qiu, Y.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett.81, 2680–2682 (2002).
[CrossRef]

Qu, L.

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc.124, 2049–2055 (2002).
[CrossRef] [PubMed]

Qualtieri, A.

F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, “Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices,” Photonics Nanostruct. Fundam. Appl.10, 319–324 (2012).
[CrossRef]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett.35, 1509–1511 (2010).
[CrossRef] [PubMed]

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng.87, 1435–1438 (2010).
[CrossRef]

Quan, Q.

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Robert-Philip, I.

R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett.94, 123101 (2009).
[CrossRef]

Rudra, A.

Ryu, H. Y.

H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84, 1067–1069 (2004).
[CrossRef]

Sagnes, I.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100, 111111 (2012).
[CrossRef]

R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett.94, 123101 (2009).
[CrossRef]

Sampat, S.

A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett.11, 5213–5218 (2011).
[CrossRef] [PubMed]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

A. Shinya, S. Matsuo, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16, 19382–19387 (2008).
[CrossRef]

Savage, C. M.

C. M. Savage and H. J. Carmichael, “Single-atom optical bistability,” IEEE J. Quantum Electron.24, 1495–1498 (1988).
[CrossRef]

Scherer, A.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett.89, 191124 (2006).
[CrossRef]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett.81, 2680–2682 (2002).
[CrossRef]

D. D. T. Yoshie, O. B. Shchekin, H. Chen, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett.38, 967–968 (2002).
[CrossRef]

Schlegel, G.

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, “Fluorescence decay time of single semiconductor nanocrystals,” Phys. Rev. Lett.88, 1–4 (2002).
[CrossRef]

Seaton, C. T.

D. A. B. Miller, S. D. Smith, and C. T. Seaton, “Optical bistability in semiconductors,” IEEE J. Quantum Electron.17, 312–317 (1981).
[CrossRef]

Segawa, T.

H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84, 1067–1069 (2004).
[CrossRef]

Senellart, P.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100, 111111 (2012).
[CrossRef]

Shchekin, O. B.

D. D. T. Yoshie, O. B. Shchekin, H. Chen, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett.38, 967–968 (2002).
[CrossRef]

Shields, B.

N. de Leon, B. Shields, C. Yu, D. Englund, A. Akimov, M. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett.108, 1–5 (2012).
[CrossRef]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

A. Shinya, S. Matsuo, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16, 19382–19387 (2008).
[CrossRef]

Shukla, S.

S. Shukla, R. Kumar, A. Baev, A. S. L. Gomes, and P. N. Prasad, “Control of spontaneous emission of CdSe nanorods in a multirefringent triangular lattice photonic crystal,” J. Phys. Chem. Lett.1, 1437–1441 (2010).
[CrossRef]

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2, 515–520 (2007).
[CrossRef]

Smith, H. I.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett.80, 4614–4616 (2002).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Smith, P. W.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room temperature optical nonlinearity in GaAs/Ga1−x Alx As multiple quantum well structures,” Appl. Phys. Lett.41, 679–681 (1982).
[CrossRef]

Smith, S. D.

D. A. B. Miller, S. D. Smith, and C. T. Seaton, “Optical bistability in semiconductors,” IEEE J. Quantum Electron.17, 312–317 (1981).
[CrossRef]

Snee, P. T.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater.17, 1131–1136 (2005).
[CrossRef]

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2, 515–520 (2007).
[CrossRef]

Soljacic, M.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E66, 055501 (2002).
[CrossRef]

Solomon, G. S.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

Sridharan, D.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

D. Sridharan and E. Waks, “All-optical switch using quantum-dot saturable absorbers in a DBR microcavity,” IEEE J. Quantum Electron.47, 31–39 (2011).
[CrossRef]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Stevenson, M.

B. Mashford, M. Stevenson, and Z. Popovic, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7, 407–412 (2013).
[CrossRef]

Stingl, J.

Stomeo, T.

F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, “Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices,” Photonics Nanostruct. Fundam. Appl.10, 319–324 (2012).
[CrossRef]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett.35, 1509–1511 (2010).
[CrossRef] [PubMed]

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng.87, 1435–1438 (2010).
[CrossRef]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Stufler, S.

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Power broadening of the exciton linewidth in a single In-GaAs/GaAs quantum dot,” Appl. Phys. Lett.85, 4202 (2004).
[CrossRef]

Sugimoto, Y.

Sundar, V. C.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett.80, 4614–4616 (2002).
[CrossRef]

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II–VI semiconductor quantum dot–polymer composites,” Adv. Mater.12, 1102–1105 (2000).
[CrossRef]

Talneau, A.

R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett.94, 123101 (2009).
[CrossRef]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

A. Shinya, S. Matsuo, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16, 19382–19387 (2008).
[CrossRef]

Tanaka, Y.

Tandaechanurat, A.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260–264 (2008).
[CrossRef]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

Ten, S.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71, 1595–1597 (1997).
[CrossRef]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Tretiak, S.

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies : Towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89, 186802 (2002).
[CrossRef]

Tsang, W. T.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room temperature optical nonlinearity in GaAs/Ga1−x Alx As multiple quantum well structures,” Appl. Phys. Lett.41, 679–681 (1982).
[CrossRef]

Vahala, K.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett.89, 191124 (2006).
[CrossRef]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

Van den Heuvel, D. J.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B105, 8281–8284 (2001).
[CrossRef]

van Driel, A.

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 1–8 (2007).
[CrossRef]

I. Nikolaev, P. Lodahl, A. van Driel, A. Koenderink, and W. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B75, 115302 (2007).
[CrossRef]

van Driel, A. F.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

van Lingen, J. N. J.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B105, 8281–8284 (2001).
[CrossRef]

van Sark, W. G. J. H. M.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B105, 8281–8284 (2001).
[CrossRef]

Vanmaekelbergh, D.

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 1–8 (2007).
[CrossRef]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Vela, J.

A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett.11, 5213–5218 (2011).
[CrossRef] [PubMed]

Venkatesan, T. N. C.

H. M. Gibbs, S. L. Mccall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett.35, 451–453 (1979).
[CrossRef]

Vergeer, P.

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 1–8 (2007).
[CrossRef]

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Voisin, P.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100, 111111 (2012).
[CrossRef]

Vos, W.

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 1–8 (2007).
[CrossRef]

I. Nikolaev, P. Lodahl, A. van Driel, A. Koenderink, and W. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B75, 115302 (2007).
[CrossRef]

Vos, W. L.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Vuckovic, J.

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96, 031107 (2010).
[CrossRef]

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett.90, 151102 (2007).
[CrossRef]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

Waks, E.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

D. Sridharan and E. Waks, “All-optical switch using quantum-dot saturable absorbers in a DBR microcavity,” IEEE J. Quantum Electron.47, 31–39 (2011).
[CrossRef]

Walsh, M.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett.80, 4614–4616 (2002).
[CrossRef]

Watanabe, Y.

Wiegmann, W.

H. M. Gibbs, S. L. Mccall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett.35, 451–453 (1979).
[CrossRef]

Wong, C. W.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

Xue, J.

L. Qian, Y. Zheng, J. Xue, and P. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5, 543–548 (2011).
[CrossRef]

Yamamoto, Y.

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett.90, 151102 (2007).
[CrossRef]

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

Yang, L.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett.89, 191124 (2006).
[CrossRef]

Yang, X.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

Yoshie, D. D. T.

D. D. T. Yoshie, O. B. Shchekin, H. Chen, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett.38, 967–968 (2002).
[CrossRef]

Yoshie, T.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett.81, 2680–2682 (2002).
[CrossRef]

Yu, C.

N. de Leon, B. Shields, C. Yu, D. Englund, A. Akimov, M. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett.108, 1–5 (2012).
[CrossRef]

Yu, M.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

Zhang, B.

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett.90, 151102 (2007).
[CrossRef]

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2, 515–520 (2007).
[CrossRef]

Zheng, Y.

L. Qian, Y. Zheng, J. Xue, and P. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5, 543–548 (2011).
[CrossRef]

Zrenner, A.

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Power broadening of the exciton linewidth in a single In-GaAs/GaAs quantum dot,” Appl. Phys. Lett.85, 4202 (2004).
[CrossRef]

Adv. Mater. (2)

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II–VI semiconductor quantum dot–polymer composites,” Adv. Mater.12, 1102–1105 (2000).
[CrossRef]

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater.17, 1131–1136 (2005).
[CrossRef]

Appl. Phys. Lett. (13)

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett.89, 191124 (2006).
[CrossRef]

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett.80, 4614–4616 (2002).
[CrossRef]

H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84, 1067–1069 (2004).
[CrossRef]

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett.90, 151102 (2007).
[CrossRef]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett.81, 2680–2682 (2002).
[CrossRef]

H. M. Gibbs, S. L. Mccall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett.35, 451–453 (1979).
[CrossRef]

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room temperature optical nonlinearity in GaAs/Ga1−x Alx As multiple quantum well structures,” Appl. Phys. Lett.41, 679–681 (1982).
[CrossRef]

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96, 031107 (2010).
[CrossRef]

R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett.94, 123101 (2009).
[CrossRef]

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100, 111111 (2012).
[CrossRef]

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71, 1595–1597 (1997).
[CrossRef]

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Power broadening of the exciton linewidth in a single In-GaAs/GaAs quantum dot,” Appl. Phys. Lett.85, 4202 (2004).
[CrossRef]

Chem. Phys. (1)

X. Brokmann, L. Coolen, J. Hermier, and M. Dahan, “Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface,” Chem. Phys.318, 91–98 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett.329, 399–404 (2000).
[CrossRef]

Electron. Lett. (1)

D. D. T. Yoshie, O. B. Shchekin, H. Chen, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett.38, 967–968 (2002).
[CrossRef]

IEEE J. Quantum Electron. (4)

D. Sridharan and E. Waks, “All-optical switch using quantum-dot saturable absorbers in a DBR microcavity,” IEEE J. Quantum Electron.47, 31–39 (2011).
[CrossRef]

C. M. Savage and H. J. Carmichael, “Single-atom optical bistability,” IEEE J. Quantum Electron.24, 1495–1498 (1988).
[CrossRef]

D. A. B. Miller, S. D. Smith, and C. T. Seaton, “Optical bistability in semiconductors,” IEEE J. Quantum Electron.17, 312–317 (1981).
[CrossRef]

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

J. Am. Chem. Soc. (1)

L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc.124, 2049–2055 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B105, 8281–8284 (2001).
[CrossRef]

B. Fisher and H. Eisler, “Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes,” J. Phys. Chem. B108, 143–148 (2004).
[CrossRef]

J. Phys. Chem. Lett. (1)

S. Shukla, R. Kumar, A. Baev, A. S. L. Gomes, and P. N. Prasad, “Control of spontaneous emission of CdSe nanorods in a multirefringent triangular lattice photonic crystal,” J. Phys. Chem. Lett.1, 1437–1441 (2010).
[CrossRef]

Los Alamos Science (1)

V. I. Klimov, “From fundamental photophysics to multicolor lasing,” Los Alamos Science28, 214–220 (2003).

Microelectron. Eng. (1)

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng.87, 1435–1438 (2010).
[CrossRef]

Nano Lett. (2)

A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett.11, 5213–5218 (2011).
[CrossRef] [PubMed]

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260–264 (2008).
[CrossRef]

Nat. Nanotechnol. (1)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2, 515–520 (2007).
[CrossRef]

Nat. Photonics (4)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007).
[CrossRef]

B. Mashford, M. Stevenson, and Z. Popovic, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics7, 407–412 (2013).
[CrossRef]

L. Qian, Y. Zheng, J. Xue, and P. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics5, 543–548 (2011).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006).
[CrossRef]

Nature (3)

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

Opt. Express (7)

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express12, 6606–6614 (2006).
[CrossRef]

M. Barth, J. Kouba, J. Stingl, B. Löchel, and O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express15, 17231–40 (2007).
[CrossRef] [PubMed]

A. Shinya, S. Matsuo, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16, 19382–19387 (2008).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express17, 3802–3817 (2009).
[CrossRef] [PubMed]

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site- controlled quantum-wire active medium,” Opt. Express17, 18178–18183 (2009).
[CrossRef] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19, 18529–18542 (2011).
[CrossRef] [PubMed]

M. W. Mccutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16, 408–413 (2008).
[CrossRef]

Opt. Lett. (2)

Photonics Nanostruct. Fundam. Appl. (1)

F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, “Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices,” Photonics Nanostruct. Fundam. Appl.10, 319–324 (2012).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Phys. Rev. B (2)

I. Nikolaev, P. Lodahl, A. van Driel, A. Koenderink, and W. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B75, 115302 (2007).
[CrossRef]

A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 1–8 (2007).
[CrossRef]

Phys. Rev. E (1)

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E66, 055501 (2002).
[CrossRef]

Phys. Rev. Lett. (6)

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, “Fluorescence decay time of single semiconductor nanocrystals,” Phys. Rev. Lett.88, 1–4 (2002).
[CrossRef]

X. Brokmann, L. Coolen, M. Dahan, and J. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett.93, 107403 (2004).
[CrossRef] [PubMed]

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies : Towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89, 186802 (2002).
[CrossRef]

N. de Leon, B. Shields, C. Yu, D. Englund, A. Akimov, M. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett.108, 1–5 (2012).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96, 127404 (2006).
[CrossRef] [PubMed]

Science (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271, 933–937 (1996).
[CrossRef]

Top. Appl. Phys. (1)

J. Gerard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. Appl. Phys.90, 283–327 (2003).

Other (1)

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010), Chap. 5.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Electric field intensity (|E|2) profile of the resonant cavity mode. (b) Scanning electron microscope image of a nanobeam photonic crystal cavity. (c) Photoluminescence-spectra of CdSe (ZnS) colloidal quantum dots located at the cavity and on unpatterned silicon nitride surface at room temperature.

Fig. 2
Fig. 2

(a) Time-resolved lifetime measurements of the quantum dots located at the cavity and on unpatterned silicon nitride surface (spectra shown in Fig. 1(c)). The stretched exponential fits are shown by solid curves. (b) Histogram of the lifetime (τavg from stretched exponential fit) from 29 different devices from 3 separately fabricated samples. The Gaussian fits are shown by dashed curves.

Fig. 3
Fig. 3

(a) Normalized cavity spectrum for different input pump power levels. The green curved arrows show the time sequence in which the cavity spectra were measured. (b) Cavity Q as a function of input pump power. (c) Integrated cavity photoluminescence intensity as a function of input pump power.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I 0 + A e ( t / τ s e ) β
τ avg = τ s e β Γ ( 1 β )
F ( r ) = 1 + 3 λ 3 4 π 2 n 2 Q q d V ψ ( r )
1 Q = 1 Q c + 1 Q a b 1 1 + P / P sat
I c = α P 1 + P / P sat

Metrics