Abstract

A novel all-optical system which independently measures both the amplitude and frequency of an RF signal is proposed and demonstrated. A photonic Hilbert transformer provides two orthogonal measurements of an RF signal. These are compared using four wave mixing in a highly nonlinear fiber, producing two independent outputs enabling determination of both signal frequency and amplitude. This all optical approach requires only simple, low cost DC electronics at the receiver. The system is demonstrated up to 20 GHz but can be scaled to 40 GHz and beyond.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell
Opt. Express 16(18) 13707-13712 (2008)

Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber

Lam A. Bui, Mark D. Pelusi, Trung D. Vo, Niusha Sarkhosh, Hossein Emami, Benjamin J. Eggleton, and Arnan Mitchell
Opt. Express 17(25) 22983-22991 (2009)

Low-error and broadband microwave frequency measurement in a silicon chip

Mattia Pagani, Blair Morrison, Yanbing Zhang, Alvaro Casas-Bedoya, Timo Aalto, Mikko Harjanne, Markku Kapulainen, Benjamin J. Eggleton, and David Marpaung
Optica 2(8) 751-756 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. B.-Y. Tsui, Microwave Receivers With Electronic Warfare Applications (John Wiley, 1986).
  2. L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
    [Crossref]
  3. L. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).
    [Crossref]
  4. H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
    [Crossref]
  5. N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).
    [Crossref]
  6. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform,” Opt. Express 16(18), 13707–13712 (2008).
    [Crossref] [PubMed]
  7. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett. 33(2), 98–100 (2008).
    [Crossref] [PubMed]
  8. L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
    [Crossref] [PubMed]
  9. L. A. Bui, N. Sarkhosh, and A. Mitchell, “Photonic instantaneous frequency measurement: parallel simultaneous implementations in as single highly nonlinear fiber,” IEEE Photonics J. 3(5), 915–925 (2011).
    [Crossref]
  10. L. A. Bui and A. Mitchell, “All optical instantaneous frequency measurement incorporating optical Hilbert transformer,” in 2012 International Topical Meeting on Microwave Photonics (MWP 2012), 11–14 Sep. (2012).
    [Crossref]
  11. K. Eccleston and S. Ong, “Compact planar microstripline branch-line and rat-race couplers,” IEEE Trans. Microwave Theory Tech. 51(10), 2119–2125 (2003).
    [Crossref]
  12. L. A. Bui and A. Mitchell, “Parallel all-optical instantaneous frequency measurement system using channel labeling,” IEEE Photonics Technol. Lett. 24(13), 1118–1120 (2012).
    [Crossref]

2012 (1)

L. A. Bui and A. Mitchell, “Parallel all-optical instantaneous frequency measurement system using channel labeling,” IEEE Photonics Technol. Lett. 24(13), 1118–1120 (2012).
[Crossref]

2011 (1)

L. A. Bui, N. Sarkhosh, and A. Mitchell, “Photonic instantaneous frequency measurement: parallel simultaneous implementations in as single highly nonlinear fiber,” IEEE Photonics J. 3(5), 915–925 (2011).
[Crossref]

2009 (2)

2008 (4)

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).
[Crossref]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform,” Opt. Express 16(18), 13707–13712 (2008).
[Crossref] [PubMed]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett. 33(2), 98–100 (2008).
[Crossref] [PubMed]

2006 (1)

L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

2003 (1)

K. Eccleston and S. Ong, “Compact planar microstripline branch-line and rat-race couplers,” IEEE Trans. Microwave Theory Tech. 51(10), 2119–2125 (2003).
[Crossref]

Bui, L. A.

L. A. Bui and A. Mitchell, “Parallel all-optical instantaneous frequency measurement system using channel labeling,” IEEE Photonics Technol. Lett. 24(13), 1118–1120 (2012).
[Crossref]

L. A. Bui, N. Sarkhosh, and A. Mitchell, “Photonic instantaneous frequency measurement: parallel simultaneous implementations in as single highly nonlinear fiber,” IEEE Photonics J. 3(5), 915–925 (2011).
[Crossref]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
[Crossref] [PubMed]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform,” Opt. Express 16(18), 13707–13712 (2008).
[Crossref] [PubMed]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett. 33(2), 98–100 (2008).
[Crossref] [PubMed]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).
[Crossref]

L. A. Bui and A. Mitchell, “All optical instantaneous frequency measurement incorporating optical Hilbert transformer,” in 2012 International Topical Meeting on Microwave Photonics (MWP 2012), 11–14 Sep. (2012).
[Crossref]

Chi, H.

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

Eccleston, K.

K. Eccleston and S. Ong, “Compact planar microstripline branch-line and rat-race couplers,” IEEE Trans. Microwave Theory Tech. 51(10), 2119–2125 (2003).
[Crossref]

Eggleton, B. J.

Emami, H.

Hunter, D.

L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

Mitchell, A.

L. A. Bui and A. Mitchell, “Parallel all-optical instantaneous frequency measurement system using channel labeling,” IEEE Photonics Technol. Lett. 24(13), 1118–1120 (2012).
[Crossref]

L. A. Bui, N. Sarkhosh, and A. Mitchell, “Photonic instantaneous frequency measurement: parallel simultaneous implementations in as single highly nonlinear fiber,” IEEE Photonics J. 3(5), 915–925 (2011).
[Crossref]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
[Crossref] [PubMed]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform,” Opt. Express 16(18), 13707–13712 (2008).
[Crossref] [PubMed]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett. 33(2), 98–100 (2008).
[Crossref] [PubMed]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).
[Crossref]

L. A. Bui and A. Mitchell, “All optical instantaneous frequency measurement incorporating optical Hilbert transformer,” in 2012 International Topical Meeting on Microwave Photonics (MWP 2012), 11–14 Sep. (2012).
[Crossref]

Nguyen, L.

L. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).
[Crossref]

L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

Ong, S.

K. Eccleston and S. Ong, “Compact planar microstripline branch-line and rat-race couplers,” IEEE Trans. Microwave Theory Tech. 51(10), 2119–2125 (2003).
[Crossref]

Pelusi, M. D.

Sarkhosh, N.

Vo, T. D.

Yao, J.

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

Zou, X.

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

IEEE Photonics J. (1)

L. A. Bui, N. Sarkhosh, and A. Mitchell, “Photonic instantaneous frequency measurement: parallel simultaneous implementations in as single highly nonlinear fiber,” IEEE Photonics J. 3(5), 915–925 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (5)

L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

L. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).
[Crossref]

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).
[Crossref]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).
[Crossref]

L. A. Bui and A. Mitchell, “Parallel all-optical instantaneous frequency measurement system using channel labeling,” IEEE Photonics Technol. Lett. 24(13), 1118–1120 (2012).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

K. Eccleston and S. Ong, “Compact planar microstripline branch-line and rat-race couplers,” IEEE Trans. Microwave Theory Tech. 51(10), 2119–2125 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Other (2)

J. B.-Y. Tsui, Microwave Receivers With Electronic Warfare Applications (John Wiley, 1986).

L. A. Bui and A. Mitchell, “All optical instantaneous frequency measurement incorporating optical Hilbert transformer,” in 2012 International Topical Meeting on Microwave Photonics (MWP 2012), 11–14 Sep. (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 a) All optical IFM Principle: b) Lasers LD1 and LD2 generate optical carriers ω1 and ω2 which are combined; c) Both carriers modulated by RF signal using Mach–Zehnder modulator (MZM); d) carriers are differentially delayed by a cascaded fiber Bragg grating (CFBG) and multiplied together using four-wave mixing in a highly nonlinear fiber (HNLF) to create idler at 2ω12. e) This idler has power oscillates with RF signal frequency and can be used for frequency measurement.
Fig. 2
Fig. 2 Concept of amplitude independent, orthogonal IFM.
Fig. 3
Fig. 3 Principle of transversal Hilbert transform a) Impulse responses of the ideal and a discrete time Hilbert transformer with tap separation of Δt = 80 ps. b) and c) Amplitude and phase responses of the ideal, two discrete tap Hilbert transformers of Fig. 3(a).
Fig. 4
Fig. 4 All optical orthogonal IFM: LD1, LD2, LD3 & LD4 generate optical carriers λ1, λ2, λ3 & λ4 respectively. Carriers modulated by and RF tone from a signal generator via a 2x2 Mach-Zehnder modulator (MZM). Carrier λ1 is input to Port 1 to attain negative modulation while λ2, λ3 and λ4 combined using arrayed waveguide grating (AWG) and input to Port 2 to achieve positive modulation. All modulated carriers are collected from the same output and amplified using an erbium doped fibre amplifier (EDFA). Each carrier then receives a different delay through use of a cascaded fiber Bragg grating (CFBG). The delayed carriers are introduced to a highly nonlinear fiber (HNLF) generating new idler wavelengths. A programmable optical filter (WaveShaper) isolates the idler at 2λ42, to one output port, which is detected by PD1 as the un-phase shifted reference. The Wave Shaper also sends both idlers at 2λ41 and 2λ43 to a second output port which is detected by PD2 as phase shifted orthogonal measurement. Insets a) Expected taps at MZM output; b) Expected taps at input to PD1 and c) Expected taps at input to PD2.
Fig. 5
Fig. 5 Optical spectra at HNLF input/output: a) Illustrated spectrum at HNLF output: signals (Ch1,Ch2 & Ch3), pump (Ch8) and idlers (Ch13, Ch14 & Ch15); b) OSA trace at the HNLF input; c) OSA trace at the HNLF output.
Fig. 6
Fig. 6 Optical spectra at system output with isolation of: (a) Ch13; (b) Ch14; (c) Ch15; (d) Ch13 & Ch15 simultaneously; power as a function of RF frequency with isolation of (e) Ch13; (f) Ch14; (g) Ch15 and (h) Ch13 & Ch15 simultaneously. For (e)-(h): dots represent measurements and lines represent predictions using Eq. (1).
Fig. 7
Fig. 7 Output power for various input RF power levels frequencies: a) PD1 (Ch14); b) PD2 (Ch13 + Ch15). Symbols represent measurements and lines represent predictions using Eq. (1).
Fig. 8
Fig. 8 Interpreted RF frequency and power by solving Eqs. (2) and (3) using the data of Fig. 7. a) Interpreted RF frequency and b) Calculated error of frequency measurements of Fig. 8(a). c) Interpreted RF power and d) Calculated error of amplitude measurements of Fig. 8(c).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P (2 λ i λ j ) P ij { 1+8 m i 2 +2 m j 2 +8 m i m j cos( ΩΔ t ij ) }
P ' ij = P ij { 8 m i 2 +2 m j 2 +8 m i m j cos( ΩΔ t ij ) }
P ' 41 +P ' 43 P ' 42 = P 41 { 108cos( ΩΔ t 14 ) }+ P 43 { 10+8cos( ΩΔ t 34 ) } P 42 { 10+8cos( ΩΔ t 24 ) }

Metrics