Abstract

We propose a route to examine the thermal degradation of organic light-emitting diodes (OLEDs) with infrared (IR) imaging and impedance spectroscopy. Four different OLEDs with tris (8-hydroxyquinolinato) aluminum are prepared in this study for the analysis of thermal degradation. Our comparison of the thermal and electrical characteristics of these OLEDs reveals that the real-time temperatures of these OLEDs obtained from the IR images clearly correlate with the electrical properties and lifetimes. The OLED with poor electrical properties shows a fairly high temperature during the operation and a considerably short lifetime. Based on the correlation of the real-time temperature and the performance of the OLEDs, the impedance results suggest different thermal degradation mechanisms for each of the OLEDs. The analysis method suggested in this study will be helpful in developing OLEDs with higher efficiency and longer lifetime.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).
  2. W. Cummings, “The impact of materials and system design choices on reflective display quality for mobile device applicaionts,” SID Symp. Dig. Tech. Pap.41, 935–938 (2010).
  3. C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee, T.-S. Kim, Y.-H. Tak, S.-Y. Cha, and B.-C. Ahn, “55-inch FHD OLED TV employing new tandem WOLEDs,” SID Symp. Dig. Tech. Pap.43, 279–281 (2012).
  4. H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
    [CrossRef] [PubMed]
  5. H. Sasabe, K. Minamoto, Y.-J. Pu, M. Hirasawa, and J. Kido, “Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%,” Org. Electron.13(11), 2615–2619 (2012).
    [CrossRef]
  6. P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).
  7. C. S. Choi, S.-M. Lee, M. S. Lim, K. C. Choi, D. Kim, D. Y. Jeon, Y. Yang, and O. O. Park, “Improved light extraction efficiency in organic light emitting diodes with a perforated WO3 hole injection layer fabricated by use of colloidal lithography,” Opt. Express20(S2), A309–A317 (2012).
    [CrossRef] [PubMed]
  8. A. Cester, D. Bari, J. Framarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, and J. J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectron. Reliab.50(9–11), 1866–1870 (2010).
    [CrossRef]
  9. J. Park, J. Lee, and Y.-Y. Noh, “Optical and thermal properties of large-area OLED lightnings with metallic grids,” Org. Electron.13(1), 184–194 (2012).
    [CrossRef]
  10. K. K. Lin, S. J. Chua, Wei-Wang, and S. F. Lim, “Influence of electrical stress voltage on cathode degradation of organic light-emitting devices,” J. Appl. Phys.90(2), 976–979 (2001).
    [CrossRef]
  11. A. B. Chwang, R. C. Kwong, and J. J. Brown, “Graded mixed-layer organic light-emitting devices,” Appl. Phys. Lett.80(5), 725–727 (2002).
    [CrossRef]
  12. G. Nenna, G. Flaminio, T. Fasolino, C. Minarini, R. Miscioscia, D. Palumbo, and M. Pellegrino, “A study on thermal degradation of organic LEDs using IR imaging,” Macromol. Symp.247(1), 326–332 (2007).
    [CrossRef]
  13. I. Kaya and A. Aydin, “Synthesis and characterization of the polyaminophenol derivatives containing thiophene in side chain: Thermal degradation, electrical conductivity, optical-electrochemical, and fluorescent properties,” J. Appl. Polym. Sci.121(5), 3028–3040 (2011).
    [CrossRef]
  14. J. Birnstock, G. He, S. Murano, A. Werner, and O. Zeika, “White stacked OLED with 35 lm/W and 100,000 hours lifetime at 1000 cd/m2 for display and lighting applications,” SID Symp. Dig. Tech. Pap.39, 822–825 (2008).
  15. J. Kwak, Y.-Y. Lyu, S. Noh, H. Lee, M. Park, B. Choi, K. Char, and C. Lee, “Hole transport materials with high glass transition temperatures for highly stable organic light-emitting diodes,” Thin Solid Films520(24), 7157–7163 (2012).
    [CrossRef]
  16. S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys.107(5), 054501 (2010).
    [CrossRef]
  17. S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE7415, 74150G (2009).
  18. C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
    [CrossRef]
  19. G. Nenna, A. De Girolamo Del Mauro, R. Miscioscia, T. Fasolino, G. Pandolfi, and C. Minarini, “Electro-optical limits of organic LED investigated through temperature and applied field dependencies,” Polym. Compos.34(9), 1477–1482 (2013).
    [CrossRef]
  20. H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys.89(1), 420–424 (2001).
    [CrossRef]
  21. T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, “Efficient phosphorescent polymer yellow-light-emitting diodes based on solution-processed small molecular electron transporting layer,” ACS Appl. Mater. Interfaces3(2), 410–416 (2011).
    [CrossRef] [PubMed]
  22. S. Naka, H. Okada, H. Onnagawa, and T. Tsutsui, “High electron mobility in bathophenanthroline,” Appl. Phys. Lett.76(2), 197–199 (2000).
    [CrossRef]
  23. Q. T. Le, F. M. Avendano, E. W. Forsythe, L. Yan, Y. Gao, and C. W. Tang, “X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices,” J. Vac. Sci. Technol. A17(4), 2314–2317 (1999).
    [CrossRef]
  24. D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, “Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss,” J. Appl. Phys.93(2), 1108–1119 (2003).
    [CrossRef]
  25. Z. D. Popovic, H. Aziz, N.-X. Hu, A.-M. Hor, and G. Xu, “Long-term degradation mechanism of tris(8-hydroxyquinoline) aluminum-based organic light emitting devices,” Synth. Met.111–112, 229–232 (2000).
    [CrossRef]
  26. G. Vamvounis, H. Aziz, N.-X. Hu, and Z. D. Popovic, “Temperature dependence of operational stability of organic light-emitting diodes based on mixed emitter layers,” Synth. Met.143(1), 69–73 (2004).
    [CrossRef]
  27. M. Matsumura and Y. Hirose, “Impedance spectroscopic analysis of forward biased metal oxide semiconductor tunnel diodes (MOSTD),” Appl. Surf. Sci.175–176, 740–745 (2001).
    [CrossRef]
  28. Y. J. Lee, S.-S. Park, J. Kim, and H. Kim, “Interface morphologies and interlayer diffusions in organic light emitting device by x-ray scattering,” Appl. Phys. Lett.94(22), 223305 (2009).
    [CrossRef]

2013 (1)

G. Nenna, A. De Girolamo Del Mauro, R. Miscioscia, T. Fasolino, G. Pandolfi, and C. Minarini, “Electro-optical limits of organic LED investigated through temperature and applied field dependencies,” Polym. Compos.34(9), 1477–1482 (2013).
[CrossRef]

2012 (6)

J. Park, J. Lee, and Y.-Y. Noh, “Optical and thermal properties of large-area OLED lightnings with metallic grids,” Org. Electron.13(1), 184–194 (2012).
[CrossRef]

J. Kwak, Y.-Y. Lyu, S. Noh, H. Lee, M. Park, B. Choi, K. Char, and C. Lee, “Hole transport materials with high glass transition temperatures for highly stable organic light-emitting diodes,” Thin Solid Films520(24), 7157–7163 (2012).
[CrossRef]

C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee, T.-S. Kim, Y.-H. Tak, S.-Y. Cha, and B.-C. Ahn, “55-inch FHD OLED TV employing new tandem WOLEDs,” SID Symp. Dig. Tech. Pap.43, 279–281 (2012).

H. Sasabe, K. Minamoto, Y.-J. Pu, M. Hirasawa, and J. Kido, “Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%,” Org. Electron.13(11), 2615–2619 (2012).
[CrossRef]

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

C. S. Choi, S.-M. Lee, M. S. Lim, K. C. Choi, D. Kim, D. Y. Jeon, Y. Yang, and O. O. Park, “Improved light extraction efficiency in organic light emitting diodes with a perforated WO3 hole injection layer fabricated by use of colloidal lithography,” Opt. Express20(S2), A309–A317 (2012).
[CrossRef] [PubMed]

2011 (3)

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

I. Kaya and A. Aydin, “Synthesis and characterization of the polyaminophenol derivatives containing thiophene in side chain: Thermal degradation, electrical conductivity, optical-electrochemical, and fluorescent properties,” J. Appl. Polym. Sci.121(5), 3028–3040 (2011).
[CrossRef]

T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, “Efficient phosphorescent polymer yellow-light-emitting diodes based on solution-processed small molecular electron transporting layer,” ACS Appl. Mater. Interfaces3(2), 410–416 (2011).
[CrossRef] [PubMed]

2010 (5)

C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
[CrossRef]

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys.107(5), 054501 (2010).
[CrossRef]

A. Cester, D. Bari, J. Framarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, and J. J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectron. Reliab.50(9–11), 1866–1870 (2010).
[CrossRef]

W. Cummings, “The impact of materials and system design choices on reflective display quality for mobile device applicaionts,” SID Symp. Dig. Tech. Pap.41, 935–938 (2010).

H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
[CrossRef] [PubMed]

2009 (2)

Y. J. Lee, S.-S. Park, J. Kim, and H. Kim, “Interface morphologies and interlayer diffusions in organic light emitting device by x-ray scattering,” Appl. Phys. Lett.94(22), 223305 (2009).
[CrossRef]

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE7415, 74150G (2009).

2008 (1)

J. Birnstock, G. He, S. Murano, A. Werner, and O. Zeika, “White stacked OLED with 35 lm/W and 100,000 hours lifetime at 1000 cd/m2 for display and lighting applications,” SID Symp. Dig. Tech. Pap.39, 822–825 (2008).

2007 (1)

G. Nenna, G. Flaminio, T. Fasolino, C. Minarini, R. Miscioscia, D. Palumbo, and M. Pellegrino, “A study on thermal degradation of organic LEDs using IR imaging,” Macromol. Symp.247(1), 326–332 (2007).
[CrossRef]

2004 (1)

G. Vamvounis, H. Aziz, N.-X. Hu, and Z. D. Popovic, “Temperature dependence of operational stability of organic light-emitting diodes based on mixed emitter layers,” Synth. Met.143(1), 69–73 (2004).
[CrossRef]

2003 (1)

D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, “Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss,” J. Appl. Phys.93(2), 1108–1119 (2003).
[CrossRef]

2002 (1)

A. B. Chwang, R. C. Kwong, and J. J. Brown, “Graded mixed-layer organic light-emitting devices,” Appl. Phys. Lett.80(5), 725–727 (2002).
[CrossRef]

2001 (3)

K. K. Lin, S. J. Chua, Wei-Wang, and S. F. Lim, “Influence of electrical stress voltage on cathode degradation of organic light-emitting devices,” J. Appl. Phys.90(2), 976–979 (2001).
[CrossRef]

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys.89(1), 420–424 (2001).
[CrossRef]

M. Matsumura and Y. Hirose, “Impedance spectroscopic analysis of forward biased metal oxide semiconductor tunnel diodes (MOSTD),” Appl. Surf. Sci.175–176, 740–745 (2001).
[CrossRef]

2000 (2)

Z. D. Popovic, H. Aziz, N.-X. Hu, A.-M. Hor, and G. Xu, “Long-term degradation mechanism of tris(8-hydroxyquinoline) aluminum-based organic light emitting devices,” Synth. Met.111–112, 229–232 (2000).
[CrossRef]

S. Naka, H. Okada, H. Onnagawa, and T. Tsutsui, “High electron mobility in bathophenanthroline,” Appl. Phys. Lett.76(2), 197–199 (2000).
[CrossRef]

1999 (1)

Q. T. Le, F. M. Avendano, E. W. Forsythe, L. Yan, Y. Gao, and C. W. Tang, “X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices,” J. Vac. Sci. Technol. A17(4), 2314–2317 (1999).
[CrossRef]

Adamovich, V.

A. Cester, D. Bari, J. Framarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, and J. J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectron. Reliab.50(9–11), 1866–1870 (2010).
[CrossRef]

Ahn, B.-C.

C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee, T.-S. Kim, Y.-H. Tak, S.-Y. Cha, and B.-C. Ahn, “55-inch FHD OLED TV employing new tandem WOLEDs,” SID Symp. Dig. Tech. Pap.43, 279–281 (2012).

Avendano, F. M.

Q. T. Le, F. M. Avendano, E. W. Forsythe, L. Yan, Y. Gao, and C. W. Tang, “X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices,” J. Vac. Sci. Technol. A17(4), 2314–2317 (1999).
[CrossRef]

Aydin, A.

I. Kaya and A. Aydin, “Synthesis and characterization of the polyaminophenol derivatives containing thiophene in side chain: Thermal degradation, electrical conductivity, optical-electrochemical, and fluorescent properties,” J. Appl. Polym. Sci.121(5), 3028–3040 (2011).
[CrossRef]

Aziz, H.

G. Vamvounis, H. Aziz, N.-X. Hu, and Z. D. Popovic, “Temperature dependence of operational stability of organic light-emitting diodes based on mixed emitter layers,” Synth. Met.143(1), 69–73 (2004).
[CrossRef]

Z. D. Popovic, H. Aziz, N.-X. Hu, A.-M. Hor, and G. Xu, “Long-term degradation mechanism of tris(8-hydroxyquinoline) aluminum-based organic light emitting devices,” Synth. Met.111–112, 229–232 (2000).
[CrossRef]

Bae, S.-J.

C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee, T.-S. Kim, Y.-H. Tak, S.-Y. Cha, and B.-C. Ahn, “55-inch FHD OLED TV employing new tandem WOLEDs,” SID Symp. Dig. Tech. Pap.43, 279–281 (2012).

Bari, D.

A. Cester, D. Bari, J. Framarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, and J. J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectron. Reliab.50(9–11), 1866–1870 (2010).
[CrossRef]

Birnstock, J.

J. Birnstock, G. He, S. Murano, A. Werner, and O. Zeika, “White stacked OLED with 35 lm/W and 100,000 hours lifetime at 1000 cd/m2 for display and lighting applications,” SID Symp. Dig. Tech. Pap.39, 822–825 (2008).

Brown, J. J.

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

A. Cester, D. Bari, J. Framarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, and J. J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectron. Reliab.50(9–11), 1866–1870 (2010).
[CrossRef]

A. B. Chwang, R. C. Kwong, and J. J. Brown, “Graded mixed-layer organic light-emitting devices,” Appl. Phys. Lett.80(5), 725–727 (2002).
[CrossRef]

Brütting, W.

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys.107(5), 054501 (2010).
[CrossRef]

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE7415, 74150G (2009).

Cester, A.

A. Cester, D. Bari, J. Framarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, and J. J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectron. Reliab.50(9–11), 1866–1870 (2010).
[CrossRef]

Cha, S.-Y.

C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee, T.-S. Kim, Y.-H. Tak, S.-Y. Cha, and B.-C. Ahn, “55-inch FHD OLED TV employing new tandem WOLEDs,” SID Symp. Dig. Tech. Pap.43, 279–281 (2012).

Chang, C.-H.

C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
[CrossRef]

Char, K.

J. Kwak, Y.-Y. Lyu, S. Noh, H. Lee, M. Park, B. Choi, K. Char, and C. Lee, “Hole transport materials with high glass transition temperatures for highly stable organic light-emitting diodes,” Thin Solid Films520(24), 7157–7163 (2012).
[CrossRef]

Chen, C.-C.

C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
[CrossRef]

Chen, J.

T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, “Efficient phosphorescent polymer yellow-light-emitting diodes based on solution-processed small molecular electron transporting layer,” ACS Appl. Mater. Interfaces3(2), 410–416 (2011).
[CrossRef] [PubMed]

Cho, T.-Y.

C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
[CrossRef]

Choi, B.

J. Kwak, Y.-Y. Lyu, S. Noh, H. Lee, M. Park, B. Choi, K. Char, and C. Lee, “Hole transport materials with high glass transition temperatures for highly stable organic light-emitting diodes,” Thin Solid Films520(24), 7157–7163 (2012).
[CrossRef]

Choi, C. S.

Choi, H.-S.

C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee, T.-S. Kim, Y.-H. Tak, S.-Y. Cha, and B.-C. Ahn, “55-inch FHD OLED TV employing new tandem WOLEDs,” SID Symp. Dig. Tech. Pap.43, 279–281 (2012).

Choi, K. C.

Chua, S. J.

K. K. Lin, S. J. Chua, Wei-Wang, and S. F. Lim, “Influence of electrical stress voltage on cathode degradation of organic light-emitting devices,” J. Appl. Phys.90(2), 976–979 (2001).
[CrossRef]

Chwang, A. B.

A. B. Chwang, R. C. Kwong, and J. J. Brown, “Graded mixed-layer organic light-emitting devices,” Appl. Phys. Lett.80(5), 725–727 (2002).
[CrossRef]

Cummings, W.

W. Cummings, “The impact of materials and system design choices on reflective display quality for mobile device applicaionts,” SID Symp. Dig. Tech. Pap.41, 935–938 (2010).

De Girolamo Del Mauro, A.

G. Nenna, A. De Girolamo Del Mauro, R. Miscioscia, T. Fasolino, G. Pandolfi, and C. Minarini, “Electro-optical limits of organic LED investigated through temperature and applied field dependencies,” Polym. Compos.34(9), 1477–1482 (2013).
[CrossRef]

Dyatkin, A. B.

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

Elschner, A.

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys.107(5), 054501 (2010).
[CrossRef]

Elshenawy, Z.

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

Fasolino, T.

G. Nenna, A. De Girolamo Del Mauro, R. Miscioscia, T. Fasolino, G. Pandolfi, and C. Minarini, “Electro-optical limits of organic LED investigated through temperature and applied field dependencies,” Polym. Compos.34(9), 1477–1482 (2013).
[CrossRef]

G. Nenna, G. Flaminio, T. Fasolino, C. Minarini, R. Miscioscia, D. Palumbo, and M. Pellegrino, “A study on thermal degradation of organic LEDs using IR imaging,” Macromol. Symp.247(1), 326–332 (2007).
[CrossRef]

Flaminio, G.

G. Nenna, G. Flaminio, T. Fasolino, C. Minarini, R. Miscioscia, D. Palumbo, and M. Pellegrino, “A study on thermal degradation of organic LEDs using IR imaging,” Macromol. Symp.247(1), 326–332 (2007).
[CrossRef]

Forrest, S. R.

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

Forsythe, E. W.

Q. T. Le, F. M. Avendano, E. W. Forsythe, L. Yan, Y. Gao, and C. W. Tang, “X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices,” J. Vac. Sci. Technol. A17(4), 2314–2317 (1999).
[CrossRef]

Framarin, J.

A. Cester, D. Bari, J. Framarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, and J. J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectron. Reliab.50(9–11), 1866–1870 (2010).
[CrossRef]

Fuchs, E.

H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
[CrossRef] [PubMed]

Fukai, S.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Gao, Y.

Q. T. Le, F. M. Avendano, E. W. Forsythe, L. Yan, Y. Gao, and C. W. Tang, “X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices,” J. Vac. Sci. Technol. A17(4), 2314–2317 (1999).
[CrossRef]

Gastel, M.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys.89(1), 420–424 (2001).
[CrossRef]

Han, C.-W.

C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee, T.-S. Kim, Y.-H. Tak, S.-Y. Cha, and B.-C. Ahn, “55-inch FHD OLED TV employing new tandem WOLEDs,” SID Symp. Dig. Tech. Pap.43, 279–281 (2012).

Hatano, K.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Hayakawa, M.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

He, G.

J. Birnstock, G. He, S. Murano, A. Werner, and O. Zeika, “White stacked OLED with 35 lm/W and 100,000 hours lifetime at 1000 cd/m2 for display and lighting applications,” SID Symp. Dig. Tech. Pap.39, 822–825 (2008).

Heil, H.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys.89(1), 420–424 (2001).
[CrossRef]

Hirasawa, M.

H. Sasabe, K. Minamoto, Y.-J. Pu, M. Hirasawa, and J. Kido, “Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%,” Org. Electron.13(11), 2615–2619 (2012).
[CrossRef]

Hirose, Y.

M. Matsumura and Y. Hirose, “Impedance spectroscopic analysis of forward biased metal oxide semiconductor tunnel diodes (MOSTD),” Appl. Surf. Sci.175–176, 740–745 (2001).
[CrossRef]

Hor, A.-M.

Z. D. Popovic, H. Aziz, N.-X. Hu, A.-M. Hor, and G. Xu, “Long-term degradation mechanism of tris(8-hydroxyquinoline) aluminum-based organic light emitting devices,” Synth. Met.111–112, 229–232 (2000).
[CrossRef]

Hu, N.-X.

G. Vamvounis, H. Aziz, N.-X. Hu, and Z. D. Popovic, “Temperature dependence of operational stability of organic light-emitting diodes based on mixed emitter layers,” Synth. Met.143(1), 69–73 (2004).
[CrossRef]

Z. D. Popovic, H. Aziz, N.-X. Hu, A.-M. Hor, and G. Xu, “Long-term degradation mechanism of tris(8-hydroxyquinoline) aluminum-based organic light emitting devices,” Synth. Met.111–112, 229–232 (2000).
[CrossRef]

Huang, B.-C.

C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
[CrossRef]

Jeon, D. Y.

Karg, S.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys.89(1), 420–424 (2001).
[CrossRef]

Kaya, I.

I. Kaya and A. Aydin, “Synthesis and characterization of the polyaminophenol derivatives containing thiophene in side chain: Thermal degradation, electrical conductivity, optical-electrochemical, and fluorescent properties,” J. Appl. Polym. Sci.121(5), 3028–3040 (2011).
[CrossRef]

Ke, T.-H.

C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
[CrossRef]

Kido, J.

H. Sasabe, K. Minamoto, Y.-J. Pu, M. Hirasawa, and J. Kido, “Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%,” Org. Electron.13(11), 2615–2619 (2012).
[CrossRef]

H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
[CrossRef] [PubMed]

Kim, D.

Kim, H.

Y. J. Lee, S.-S. Park, J. Kim, and H. Kim, “Interface morphologies and interlayer diffusions in organic light emitting device by x-ray scattering,” Appl. Phys. Lett.94(22), 223305 (2009).
[CrossRef]

Kim, J.

Y. J. Lee, S.-S. Park, J. Kim, and H. Kim, “Interface morphologies and interlayer diffusions in organic light emitting device by x-ray scattering,” Appl. Phys. Lett.94(22), 223305 (2009).
[CrossRef]

Kim, K.-M.

C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee, T.-S. Kim, Y.-H. Tak, S.-Y. Cha, and B.-C. Ahn, “55-inch FHD OLED TV employing new tandem WOLEDs,” SID Symp. Dig. Tech. Pap.43, 279–281 (2012).

Kim, T.-S.

C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee, T.-S. Kim, Y.-H. Tak, S.-Y. Cha, and B.-C. Ahn, “55-inch FHD OLED TV employing new tandem WOLEDs,” SID Symp. Dig. Tech. Pap.43, 279–281 (2012).

Kondakov, D. Y.

D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, “Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss,” J. Appl. Phys.93(2), 1108–1119 (2003).
[CrossRef]

Koyama, J.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Krall, E.

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

Kwak, J.

J. Kwak, Y.-Y. Lyu, S. Noh, H. Lee, M. Park, B. Choi, K. Char, and C. Lee, “Hole transport materials with high glass transition temperatures for highly stable organic light-emitting diodes,” Thin Solid Films520(24), 7157–7163 (2012).
[CrossRef]

Kwong, R. C.

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

A. B. Chwang, R. C. Kwong, and J. J. Brown, “Graded mixed-layer organic light-emitting devices,” Appl. Phys. Lett.80(5), 725–727 (2002).
[CrossRef]

Langer, N.

H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
[CrossRef] [PubMed]

Le, Q. T.

Q. T. Le, F. M. Avendano, E. W. Forsythe, L. Yan, Y. Gao, and C. W. Tang, “X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices,” J. Vac. Sci. Technol. A17(4), 2314–2317 (1999).
[CrossRef]

Lee, C.

J. Kwak, Y.-Y. Lyu, S. Noh, H. Lee, M. Park, B. Choi, K. Char, and C. Lee, “Hole transport materials with high glass transition temperatures for highly stable organic light-emitting diodes,” Thin Solid Films520(24), 7157–7163 (2012).
[CrossRef]

Lee, H.

J. Kwak, Y.-Y. Lyu, S. Noh, H. Lee, M. Park, B. Choi, K. Char, and C. Lee, “Hole transport materials with high glass transition temperatures for highly stable organic light-emitting diodes,” Thin Solid Films520(24), 7157–7163 (2012).
[CrossRef]

Lee, J.

J. Park, J. Lee, and Y.-Y. Noh, “Optical and thermal properties of large-area OLED lightnings with metallic grids,” Org. Electron.13(1), 184–194 (2012).
[CrossRef]

Lee, J.-M.

C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee, T.-S. Kim, Y.-H. Tak, S.-Y. Cha, and B.-C. Ahn, “55-inch FHD OLED TV employing new tandem WOLEDs,” SID Symp. Dig. Tech. Pap.43, 279–281 (2012).

Lee, S.-M.

Lee, Y. J.

Y. J. Lee, S.-S. Park, J. Kim, and H. Kim, “Interface morphologies and interlayer diffusions in organic light emitting device by x-ray scattering,” Appl. Phys. Lett.94(22), 223305 (2009).
[CrossRef]

Lennartz, C.

H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
[CrossRef] [PubMed]

Levermore, P. A.

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

Lim, M. S.

Lim, S. F.

K. K. Lin, S. J. Chua, Wei-Wang, and S. F. Lim, “Influence of electrical stress voltage on cathode degradation of organic light-emitting devices,” J. Appl. Phys.90(2), 976–979 (2001).
[CrossRef]

Lin, K. K.

K. K. Lin, S. J. Chua, Wei-Wang, and S. F. Lim, “Influence of electrical stress voltage on cathode degradation of organic light-emitting devices,” J. Appl. Phys.90(2), 976–979 (2001).
[CrossRef]

Lin, M.-S.

C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
[CrossRef]

Liu, S.-H.

C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
[CrossRef]

Lövenich, W.

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys.107(5), 054501 (2010).
[CrossRef]

Lu, Y.-J.

C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
[CrossRef]

Lyu, Y.-Y.

J. Kwak, Y.-Y. Lyu, S. Noh, H. Lee, M. Park, B. Choi, K. Char, and C. Lee, “Hole transport materials with high glass transition temperatures for highly stable organic light-emitting diodes,” Thin Solid Films520(24), 7157–7163 (2012).
[CrossRef]

Ma, D.

T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, “Efficient phosphorescent polymer yellow-light-emitting diodes based on solution-processed small molecular electron transporting layer,” ACS Appl. Mater. Interfaces3(2), 410–416 (2011).
[CrossRef] [PubMed]

Ma, R.

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

Matsumura, M.

M. Matsumura and Y. Hirose, “Impedance spectroscopic analysis of forward biased metal oxide semiconductor tunnel diodes (MOSTD),” Appl. Surf. Sci.175–176, 740–745 (2001).
[CrossRef]

Meneghesso, G.

A. Cester, D. Bari, J. Framarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, and J. J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectron. Reliab.50(9–11), 1866–1870 (2010).
[CrossRef]

Minamoto, K.

H. Sasabe, K. Minamoto, Y.-J. Pu, M. Hirasawa, and J. Kido, “Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%,” Org. Electron.13(11), 2615–2619 (2012).
[CrossRef]

Minarini, C.

G. Nenna, A. De Girolamo Del Mauro, R. Miscioscia, T. Fasolino, G. Pandolfi, and C. Minarini, “Electro-optical limits of organic LED investigated through temperature and applied field dependencies,” Polym. Compos.34(9), 1477–1482 (2013).
[CrossRef]

G. Nenna, G. Flaminio, T. Fasolino, C. Minarini, R. Miscioscia, D. Palumbo, and M. Pellegrino, “A study on thermal degradation of organic LEDs using IR imaging,” Macromol. Symp.247(1), 326–332 (2007).
[CrossRef]

Miscioscia, R.

G. Nenna, A. De Girolamo Del Mauro, R. Miscioscia, T. Fasolino, G. Pandolfi, and C. Minarini, “Electro-optical limits of organic LED investigated through temperature and applied field dependencies,” Polym. Compos.34(9), 1477–1482 (2013).
[CrossRef]

G. Nenna, G. Flaminio, T. Fasolino, C. Minarini, R. Miscioscia, D. Palumbo, and M. Pellegrino, “A study on thermal degradation of organic LEDs using IR imaging,” Macromol. Symp.247(1), 326–332 (2007).
[CrossRef]

Miyake, H.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Molt, O.

H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
[CrossRef] [PubMed]

Motoyama, T.

H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
[CrossRef] [PubMed]

Murakawa, T.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Murano, S.

J. Birnstock, G. He, S. Murano, A. Werner, and O. Zeika, “White stacked OLED with 35 lm/W and 100,000 hours lifetime at 1000 cd/m2 for display and lighting applications,” SID Symp. Dig. Tech. Pap.39, 822–825 (2008).

Nagata, T.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Naka, S.

S. Naka, H. Okada, H. Onnagawa, and T. Tsutsui, “High electron mobility in bathophenanthroline,” Appl. Phys. Lett.76(2), 197–199 (2000).
[CrossRef]

Nenna, G.

G. Nenna, A. De Girolamo Del Mauro, R. Miscioscia, T. Fasolino, G. Pandolfi, and C. Minarini, “Electro-optical limits of organic LED investigated through temperature and applied field dependencies,” Polym. Compos.34(9), 1477–1482 (2013).
[CrossRef]

G. Nenna, G. Flaminio, T. Fasolino, C. Minarini, R. Miscioscia, D. Palumbo, and M. Pellegrino, “A study on thermal degradation of organic LEDs using IR imaging,” Macromol. Symp.247(1), 326–332 (2007).
[CrossRef]

Noh, S.

J. Kwak, Y.-Y. Lyu, S. Noh, H. Lee, M. Park, B. Choi, K. Char, and C. Lee, “Hole transport materials with high glass transition temperatures for highly stable organic light-emitting diodes,” Thin Solid Films520(24), 7157–7163 (2012).
[CrossRef]

Noh, Y.-Y.

J. Park, J. Lee, and Y.-Y. Noh, “Optical and thermal properties of large-area OLED lightnings with metallic grids,” Org. Electron.13(1), 184–194 (2012).
[CrossRef]

Nowy, S.

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys.107(5), 054501 (2010).
[CrossRef]

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE7415, 74150G (2009).

Ohsawa, N.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Okada, H.

S. Naka, H. Okada, H. Onnagawa, and T. Tsutsui, “High electron mobility in bathophenanthroline,” Appl. Phys. Lett.76(2), 197–199 (2000).
[CrossRef]

Onnagawa, H.

S. Naka, H. Okada, H. Onnagawa, and T. Tsutsui, “High electron mobility in bathophenanthroline,” Appl. Phys. Lett.76(2), 197–199 (2000).
[CrossRef]

Ortner, H.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys.89(1), 420–424 (2001).
[CrossRef]

Palumbo, D.

G. Nenna, G. Flaminio, T. Fasolino, C. Minarini, R. Miscioscia, D. Palumbo, and M. Pellegrino, “A study on thermal degradation of organic LEDs using IR imaging,” Macromol. Symp.247(1), 326–332 (2007).
[CrossRef]

Pandolfi, G.

G. Nenna, A. De Girolamo Del Mauro, R. Miscioscia, T. Fasolino, G. Pandolfi, and C. Minarini, “Electro-optical limits of organic LED investigated through temperature and applied field dependencies,” Polym. Compos.34(9), 1477–1482 (2013).
[CrossRef]

Pang, H.

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

Park, J.

J. Park, J. Lee, and Y.-Y. Noh, “Optical and thermal properties of large-area OLED lightnings with metallic grids,” Org. Electron.13(1), 184–194 (2012).
[CrossRef]

Park, M.

J. Kwak, Y.-Y. Lyu, S. Noh, H. Lee, M. Park, B. Choi, K. Char, and C. Lee, “Hole transport materials with high glass transition temperatures for highly stable organic light-emitting diodes,” Thin Solid Films520(24), 7157–7163 (2012).
[CrossRef]

Park, O. O.

Park, S.-S.

Y. J. Lee, S.-S. Park, J. Kim, and H. Kim, “Interface morphologies and interlayer diffusions in organic light emitting device by x-ray scattering,” Appl. Phys. Lett.94(22), 223305 (2009).
[CrossRef]

Pellegrino, M.

G. Nenna, G. Flaminio, T. Fasolino, C. Minarini, R. Miscioscia, D. Palumbo, and M. Pellegrino, “A study on thermal degradation of organic LEDs using IR imaging,” Macromol. Symp.247(1), 326–332 (2007).
[CrossRef]

Popovic, Z. D.

G. Vamvounis, H. Aziz, N.-X. Hu, and Z. D. Popovic, “Temperature dependence of operational stability of organic light-emitting diodes based on mixed emitter layers,” Synth. Met.143(1), 69–73 (2004).
[CrossRef]

Z. D. Popovic, H. Aziz, N.-X. Hu, A.-M. Hor, and G. Xu, “Long-term degradation mechanism of tris(8-hydroxyquinoline) aluminum-based organic light emitting devices,” Synth. Met.111–112, 229–232 (2000).
[CrossRef]

Pu, Y.-J.

H. Sasabe, K. Minamoto, Y.-J. Pu, M. Hirasawa, and J. Kido, “Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%,” Org. Electron.13(11), 2615–2619 (2012).
[CrossRef]

Qi, X.

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

Ren, W.

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys.107(5), 054501 (2010).
[CrossRef]

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE7415, 74150G (2009).

Sandifer, J. R.

D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, “Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss,” J. Appl. Phys.93(2), 1108–1119 (2003).
[CrossRef]

Sasabe, H.

H. Sasabe, K. Minamoto, Y.-J. Pu, M. Hirasawa, and J. Kido, “Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%,” Org. Electron.13(11), 2615–2619 (2012).
[CrossRef]

H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
[CrossRef] [PubMed]

Sasaki, T.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Seo, S.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Shao, S.

T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, “Efficient phosphorescent polymer yellow-light-emitting diodes based on solution-processed small molecular electron transporting layer,” ACS Appl. Mater. Interfaces3(2), 410–416 (2011).
[CrossRef] [PubMed]

Silvernail, J.

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

Steiger, J.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys.89(1), 420–424 (2001).
[CrossRef]

Stößel, M.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys.89(1), 420–424 (2001).
[CrossRef]

Sugisawa, N.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Tak, Y.-H.

C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee, T.-S. Kim, Y.-H. Tak, S.-Y. Cha, and B.-C. Ahn, “55-inch FHD OLED TV employing new tandem WOLEDs,” SID Symp. Dig. Tech. Pap.43, 279–281 (2012).

Takamatsu, J.

H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
[CrossRef] [PubMed]

Tang, C. W.

D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, “Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss,” J. Appl. Phys.93(2), 1108–1119 (2003).
[CrossRef]

Q. T. Le, F. M. Avendano, E. W. Forsythe, L. Yan, Y. Gao, and C. W. Tang, “X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices,” J. Vac. Sci. Technol. A17(4), 2314–2317 (1999).
[CrossRef]

Tien, K.-C.

C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
[CrossRef]

Tsutsui, T.

S. Naka, H. Okada, H. Onnagawa, and T. Tsutsui, “High electron mobility in bathophenanthroline,” Appl. Phys. Lett.76(2), 197–199 (2000).
[CrossRef]

Ushikubo, T.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Vamvounis, G.

G. Vamvounis, H. Aziz, N.-X. Hu, and Z. D. Popovic, “Temperature dependence of operational stability of organic light-emitting diodes based on mixed emitter layers,” Synth. Met.143(1), 69–73 (2004).
[CrossRef]

von Seggern, H.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys.89(1), 420–424 (2001).
[CrossRef]

Wagenblast, G.

H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
[CrossRef] [PubMed]

Wagner, J.

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE7415, 74150G (2009).

Wang, L.

T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, “Efficient phosphorescent polymer yellow-light-emitting diodes based on solution-processed small molecular electron transporting layer,” ACS Appl. Mater. Interfaces3(2), 410–416 (2011).
[CrossRef] [PubMed]

Watanabe, S.

H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
[CrossRef] [PubMed]

Weaver, M. S.

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

Weber, J. A.

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE7415, 74150G (2009).

Wei-Wang,

K. K. Lin, S. J. Chua, Wei-Wang, and S. F. Lim, “Influence of electrical stress voltage on cathode degradation of organic light-emitting devices,” J. Appl. Phys.90(2), 976–979 (2001).
[CrossRef]

Werner, A.

J. Birnstock, G. He, S. Murano, A. Werner, and O. Zeika, “White stacked OLED with 35 lm/W and 100,000 hours lifetime at 1000 cd/m2 for display and lighting applications,” SID Symp. Dig. Tech. Pap.39, 822–825 (2008).

Wrachien, N.

A. Cester, D. Bari, J. Framarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, and J. J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectron. Reliab.50(9–11), 1866–1870 (2010).
[CrossRef]

Wu, C.-C.

C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
[CrossRef]

Xia, S.

A. Cester, D. Bari, J. Framarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, and J. J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectron. Reliab.50(9–11), 1866–1870 (2010).
[CrossRef]

Xu, G.

Z. D. Popovic, H. Aziz, N.-X. Hu, A.-M. Hor, and G. Xu, “Long-term degradation mechanism of tris(8-hydroxyquinoline) aluminum-based organic light emitting devices,” Synth. Met.111–112, 229–232 (2000).
[CrossRef]

Yamazaki, S.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Yan, L.

Q. T. Le, F. M. Avendano, E. W. Forsythe, L. Yan, Y. Gao, and C. W. Tang, “X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices,” J. Vac. Sci. Technol. A17(4), 2314–2317 (1999).
[CrossRef]

Yang, Y.

Ye, T.

T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, “Efficient phosphorescent polymer yellow-light-emitting diodes based on solution-processed small molecular electron transporting layer,” ACS Appl. Mater. Interfaces3(2), 410–416 (2011).
[CrossRef] [PubMed]

Yoshitomi, S.

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

Young, R. H.

D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, “Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss,” J. Appl. Phys.93(2), 1108–1119 (2003).
[CrossRef]

Zeika, O.

J. Birnstock, G. He, S. Murano, A. Werner, and O. Zeika, “White stacked OLED with 35 lm/W and 100,000 hours lifetime at 1000 cd/m2 for display and lighting applications,” SID Symp. Dig. Tech. Pap.39, 822–825 (2008).

ACS Appl. Mater. Interfaces (1)

T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, “Efficient phosphorescent polymer yellow-light-emitting diodes based on solution-processed small molecular electron transporting layer,” ACS Appl. Mater. Interfaces3(2), 410–416 (2011).
[CrossRef] [PubMed]

Adv. Mater. (1)

H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, and J. Kido, “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Adv. Mater.22(44), 5003–5007 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

Y. J. Lee, S.-S. Park, J. Kim, and H. Kim, “Interface morphologies and interlayer diffusions in organic light emitting device by x-ray scattering,” Appl. Phys. Lett.94(22), 223305 (2009).
[CrossRef]

S. Naka, H. Okada, H. Onnagawa, and T. Tsutsui, “High electron mobility in bathophenanthroline,” Appl. Phys. Lett.76(2), 197–199 (2000).
[CrossRef]

A. B. Chwang, R. C. Kwong, and J. J. Brown, “Graded mixed-layer organic light-emitting devices,” Appl. Phys. Lett.80(5), 725–727 (2002).
[CrossRef]

Appl. Surf. Sci. (1)

M. Matsumura and Y. Hirose, “Impedance spectroscopic analysis of forward biased metal oxide semiconductor tunnel diodes (MOSTD),” Appl. Surf. Sci.175–176, 740–745 (2001).
[CrossRef]

J. Appl. Phys. (4)

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys.107(5), 054501 (2010).
[CrossRef]

D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, “Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss,” J. Appl. Phys.93(2), 1108–1119 (2003).
[CrossRef]

K. K. Lin, S. J. Chua, Wei-Wang, and S. F. Lim, “Influence of electrical stress voltage on cathode degradation of organic light-emitting devices,” J. Appl. Phys.90(2), 976–979 (2001).
[CrossRef]

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys.89(1), 420–424 (2001).
[CrossRef]

J. Appl. Polym. Sci. (1)

I. Kaya and A. Aydin, “Synthesis and characterization of the polyaminophenol derivatives containing thiophene in side chain: Thermal degradation, electrical conductivity, optical-electrochemical, and fluorescent properties,” J. Appl. Polym. Sci.121(5), 3028–3040 (2011).
[CrossRef]

J. Photonics Energy. (1)

P. A. Levermore, A. B. Dyatkin, Z. Elshenawy, H. Pang, J. Silvernail, E. Krall, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, X. Qi, and S. R. Forrest, “Phosphorescent organic light-emitting diodes for high-efficacy long-lifetime solid-state lighting,” J. Photonics Energy.2(1), 021205 (2012).

J. Vac. Sci. Technol. A (1)

Q. T. Le, F. M. Avendano, E. W. Forsythe, L. Yan, Y. Gao, and C. W. Tang, “X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices,” J. Vac. Sci. Technol. A17(4), 2314–2317 (1999).
[CrossRef]

Macromol. Symp. (1)

G. Nenna, G. Flaminio, T. Fasolino, C. Minarini, R. Miscioscia, D. Palumbo, and M. Pellegrino, “A study on thermal degradation of organic LEDs using IR imaging,” Macromol. Symp.247(1), 326–332 (2007).
[CrossRef]

Microelectron. Reliab. (1)

A. Cester, D. Bari, J. Framarin, N. Wrachien, G. Meneghesso, S. Xia, V. Adamovich, and J. J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectron. Reliab.50(9–11), 1866–1870 (2010).
[CrossRef]

Opt. Express (1)

Org. Electron. (3)

H. Sasabe, K. Minamoto, Y.-J. Pu, M. Hirasawa, and J. Kido, “Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%,” Org. Electron.13(11), 2615–2619 (2012).
[CrossRef]

J. Park, J. Lee, and Y.-Y. Noh, “Optical and thermal properties of large-area OLED lightnings with metallic grids,” Org. Electron.13(1), 184–194 (2012).
[CrossRef]

C.-C. Chen, B.-C. Huang, M.-S. Lin, Y.-J. Lu, T.-Y. Cho, C.-H. Chang, K.-C. Tien, S.-H. Liu, T.-H. Ke, and C.-C. Wu, “Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,” Org. Electron.11(12), 1901–1908 (2010).
[CrossRef]

Polym. Compos. (1)

G. Nenna, A. De Girolamo Del Mauro, R. Miscioscia, T. Fasolino, G. Pandolfi, and C. Minarini, “Electro-optical limits of organic LED investigated through temperature and applied field dependencies,” Polym. Compos.34(9), 1477–1482 (2013).
[CrossRef]

Proc. SPIE (1)

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE7415, 74150G (2009).

SID Symp. Dig. Tech. Pap. (4)

J. Birnstock, G. He, S. Murano, A. Werner, and O. Zeika, “White stacked OLED with 35 lm/W and 100,000 hours lifetime at 1000 cd/m2 for display and lighting applications,” SID Symp. Dig. Tech. Pap.39, 822–825 (2008).

N. Sugisawa, T. Sasaki, T. Ushikubo, N. Ohsawa, S. Seo, K. Hatano, T. Nagata, S. Fukai, T. Murakawa, S. Yoshitomi, M. Hayakawa, H. Miyake, J. Koyama, and S. Yamazaki, “High-definition top-emitting AMOLED display with highly reliable oxide semiconductor field effect transistors,” SID Symp. Dig. Tech. Pap.42, 722–725 (2011).

W. Cummings, “The impact of materials and system design choices on reflective display quality for mobile device applicaionts,” SID Symp. Dig. Tech. Pap.41, 935–938 (2010).

C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee, T.-S. Kim, Y.-H. Tak, S.-Y. Cha, and B.-C. Ahn, “55-inch FHD OLED TV employing new tandem WOLEDs,” SID Symp. Dig. Tech. Pap.43, 279–281 (2012).

Synth. Met. (2)

Z. D. Popovic, H. Aziz, N.-X. Hu, A.-M. Hor, and G. Xu, “Long-term degradation mechanism of tris(8-hydroxyquinoline) aluminum-based organic light emitting devices,” Synth. Met.111–112, 229–232 (2000).
[CrossRef]

G. Vamvounis, H. Aziz, N.-X. Hu, and Z. D. Popovic, “Temperature dependence of operational stability of organic light-emitting diodes based on mixed emitter layers,” Synth. Met.143(1), 69–73 (2004).
[CrossRef]

Thin Solid Films (1)

J. Kwak, Y.-Y. Lyu, S. Noh, H. Lee, M. Park, B. Choi, K. Char, and C. Lee, “Hole transport materials with high glass transition temperatures for highly stable organic light-emitting diodes,” Thin Solid Films520(24), 7157–7163 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic (a) and energy band diagram (b) of our OLEDs.

Fig. 2
Fig. 2

J-V-L (a) and CE-L-PE (b) of our OLEDs.

Fig. 3
Fig. 3

Real-time temperatures of our OLEDs and (b) the temperature profiles at 6 minutes after the operation.

Fig. 4
Fig. 4

Lifetimes of the OLEDs.

Fig. 5
Fig. 5

Cole-Cole plots of the pristine and the degraded OLEDs.

Tables (1)

Tables Icon

Table 1 EL properties of our OLEDs.

Metrics