Abstract

High power mid-infrared (mid-IR) supercontinuum (SC) laser sources in the 3-12 µm region are of great interest for a variety of applications in many fields. Although various mid-IR SC laser sources have been proposed and investigated experimentally and theoretically in the past several years, power scaling of mid-IR SC lasers beyond 3 μm with infrared edges extending beyond 7 μm are still challenges because the wavelengths of most previously used pump sources are below 2 μm. These problems can be solved with the recent development of mode-locked fiber lasers at 3 μm. In this paper, high power mid-IR SC laser sources based on dispersion engineered tellurite and chalcogenide fibers and pumped by ultrafast lasers at 3 µm are proposed and investigated. Our simulation results show that, when a W-type tellurite fiber with a zero dispersion wavelength (ZDW) of 2.7 µm is pumped at 2.78 μm, the power proportion of the SC laser beyond 3 µm can exceed 40% and the attainable SC output power of the proposed solid-cladding tellurite fiber is one order of magnitude higher than that of existing microstructured tellurite fibers. Our calculation also predicts that a very promising super-broadband mid-IR SC fiber laser source covering two atmospheric windows and molecules’ “fingerprint” region can be obtained with a microstructured As2Se3 chalcogenide fiber pumped at 2.78 μm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.-D. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett.34(4), 470–472 (2009).
    [CrossRef] [PubMed]
  2. S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75(6–7), 799–802 (2002).
    [CrossRef]
  3. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.9(4), 545–562 (1998).
    [CrossRef] [PubMed]
  4. http://www.nktphotonics.com/
  5. K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett.38(4), 166–167 (2002).
    [CrossRef]
  6. J. Gopinath, H. Shen, H. Sotobayashi, E. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 microm,” Opt. Express12(23), 5697–5702 (2004).
    [CrossRef] [PubMed]
  7. G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett.41(14), 795–797 (2005).
    [CrossRef]
  8. J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for supercontinuum generation and femtosecond pulse compression,” J. Lightwave Technol.23(11), 3591–3596 (2005).
    [CrossRef]
  9. R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett.7(9), 666–672 (2010).
    [CrossRef]
  10. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
    [CrossRef]
  11. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
    [CrossRef]
  12. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
    [CrossRef]
  13. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
    [CrossRef]
  14. J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express21(7), 7851–7857 (2013).
    [CrossRef] [PubMed]
  15. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater.3(3), 187–203 (1994).
    [CrossRef]
  16. G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc.78(10), 2828–2830 (1995).
    [CrossRef]
  17. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008).
    [CrossRef] [PubMed]
  18. I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
    [CrossRef]
  19. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
    [CrossRef] [PubMed]
  20. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17(18), 15481–15490 (2009).
    [CrossRef] [PubMed]
  21. G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett.35(1), 58–60 (2010).
    [CrossRef] [PubMed]
  22. G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett.35(2), 136–138 (2010).
    [CrossRef] [PubMed]
  23. M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
    [CrossRef] [PubMed]
  24. G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys.107(4), 043108 (2010).
    [CrossRef]
  25. G. Qin, X. Yan, M. Liao, A. Mori, T. Suzuki, and Y. Ohishi, “Wideband supercontinuum generation in tapered tellurite microstructured fibers,” Laser Phys.21(6), 1115–1121 (2011).
    [CrossRef]
  26. M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
    [CrossRef] [PubMed]
  27. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er(3+)-doped ZBLAN fiber laser at 2.8 μm,” Opt. Lett.37(18), 3849–3851 (2012).
    [CrossRef] [PubMed]
  28. J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett.37(18), 3747–3749 (2012).
    [CrossRef] [PubMed]
  29. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010).
    [CrossRef] [PubMed]
  30. D. I. Yeom, E. C. Mägi, M. R. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett.33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  31. M. R. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express16(19), 14938–14944 (2008).
    [CrossRef] [PubMed]
  32. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
    [CrossRef] [PubMed]
  33. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).
  34. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express20(22), 24218–24225 (2012).
    [CrossRef] [PubMed]
  35. P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, 1991).
  36. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
    [CrossRef]
  37. X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys.108(12), 123110 (2010).
    [CrossRef]
  38. A. Ben-Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” Proc. PIERS, 1256–1260, Marrakesh, Morocco (2011).
  39. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
    [CrossRef]
  40. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass. Sci.1(1), 74–86 (2010).
    [CrossRef]
  41. http://www.npphotonics.com/
  42. J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]
  43. “FIMMWAVE Version 4.06,” Photon Design, Dec. 2002.
  44. R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt. Lett.28(13), 1126–1128 (2003).
    [CrossRef] [PubMed]
  45. R. Cherif, A. Ben Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for mid-infrared supercontinuum generation,” Opt. Eng.49, 095002 (2010).
    [CrossRef]
  46. http://www.coractive.com/
  47. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express15(3), 865–871 (2007).
    [CrossRef] [PubMed]
  48. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256–257, 6–16 (1999).
    [CrossRef]
  49. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011).
    [CrossRef] [PubMed]

2013 (1)

2012 (4)

2011 (4)

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

G. Qin, X. Yan, M. Liao, A. Mori, T. Suzuki, and Y. Ohishi, “Wideband supercontinuum generation in tapered tellurite microstructured fibers,” Laser Phys.21(6), 1115–1121 (2011).
[CrossRef]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011).
[CrossRef] [PubMed]

2010 (10)

R. Cherif, A. Ben Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for mid-infrared supercontinuum generation,” Opt. Eng.49, 095002 (2010).
[CrossRef]

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett.7(9), 666–672 (2010).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys.107(4), 043108 (2010).
[CrossRef]

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett.35(1), 58–60 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett.35(2), 136–138 (2010).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys.108(12), 123110 (2010).
[CrossRef]

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass. Sci.1(1), 74–86 (2010).
[CrossRef]

2009 (5)

K.-D. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett.34(4), 470–472 (2009).
[CrossRef] [PubMed]

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17(18), 15481–15490 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (3)

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express15(3), 865–871 (2007).
[CrossRef] [PubMed]

2006 (3)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
[CrossRef]

2005 (2)

2004 (1)

2003 (1)

2002 (2)

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett.38(4), 166–167 (2002).
[CrossRef]

S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75(6–7), 799–802 (2002).
[CrossRef]

1999 (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256–257, 6–16 (1999).
[CrossRef]

1998 (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.9(4), 545–562 (1998).
[CrossRef] [PubMed]

1995 (1)

G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc.78(10), 2828–2830 (1995).
[CrossRef]

1994 (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater.3(3), 187–203 (1994).
[CrossRef]

Aggarwal, I. D.

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256–257, 6–16 (1999).
[CrossRef]

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.9(4), 545–562 (1998).
[CrossRef] [PubMed]

Ben Salem, A.

R. Cherif, A. Ben Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for mid-infrared supercontinuum generation,” Opt. Eng.49, 095002 (2010).
[CrossRef]

Besnard, P.

R. Cherif, A. Ben Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for mid-infrared supercontinuum generation,” Opt. Eng.49, 095002 (2010).
[CrossRef]

Bookey, H. T.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett.7(9), 666–672 (2010).
[CrossRef]

Brambilla, G.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett.41(14), 795–797 (2005).
[CrossRef]

Brilland, L.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

R. Cherif, A. Ben Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for mid-infrared supercontinuum generation,” Opt. Eng.49, 095002 (2010).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Büchter, K.-D. F.

Buczynski, R.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett.7(9), 666–672 (2010).
[CrossRef]

Byer, R. L.

Cardinal, T.

Chartier, T.

R. Cherif, A. Ben Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for mid-infrared supercontinuum generation,” Opt. Eng.49, 095002 (2010).
[CrossRef]

Chaudhari, C.

Cheng, M.-Y.

Cherif, R.

R. Cherif, A. Ben Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for mid-infrared supercontinuum generation,” Opt. Eng.49, 095002 (2010).
[CrossRef]

Choi, D. Y.

Coen, S.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Cordeiro, C. M. B.

Cronin-Golomb, M.

Delfyett, P.

Désévédavy, F.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

Dianov, E. M.

Domachuk, P.

Duan, Z.

Dudley, J. M.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Ebendorff-Heidepriem, H.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
[CrossRef]

Eggleton, B. J.

El-Amraoui, M.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Fatome, J.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Fejer, M. M.

Feng, X.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Finazzi, V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett.41(14), 795–797 (2005).
[CrossRef]

Flanagan, J. C.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Fortier, C.

Freeman, M. J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express15(3), 865–871 (2007).
[CrossRef] [PubMed]

Fu, L.

Gadret, G.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Galvanauskas, A.

Gao, W.

Gentry, G.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Genty, G.

George, A. K.

Ghosh, G.

G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc.78(10), 2828–2830 (1995).
[CrossRef]

Gopinath, J.

Gopinath, J. T.

Granzow, N.

Guo, Y.

Hasegawa, T.

Hegde, R. S.

Herrmann, H.

Hirao, K.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass. Sci.1(1), 74–86 (2010).
[CrossRef]

Horak, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Hu, J.

Hudson, D. D.

Ippen, E.

Ippen, E. P.

Islam, M. N.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express15(3), 865–871 (2007).
[CrossRef] [PubMed]

Jackson, S. D.

Jankovic, L.

Jules, J. C.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Kar, A. K.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett.7(9), 666–672 (2010).
[CrossRef]

Kibler, B.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Kikuchi, K.

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett.38(4), 166–167 (2002).
[CrossRef]

Kim, H.

Kito, C.

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett.35(1), 58–60 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys.107(4), 043108 (2010).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett.35(2), 136–138 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Knight, J. C.

Koizumi, F.

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett.41(14), 795–797 (2005).
[CrossRef]

Krol, D.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass. Sci.1(1), 74–86 (2010).
[CrossRef]

Kujawa, I.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett.7(9), 666–672 (2010).
[CrossRef]

Kumar, M.

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Lamont, M. R.

Langrock, C.

Leong, J. Y. Y.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Li, J.

Liao, M.

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
[CrossRef] [PubMed]

G. Qin, X. Yan, M. Liao, A. Mori, T. Suzuki, and Y. Ohishi, “Wideband supercontinuum generation in tapered tellurite microstructured fibers,” Laser Phys.21(6), 1115–1121 (2011).
[CrossRef]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett.35(2), 136–138 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys.107(4), 043108 (2010).
[CrossRef]

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett.35(1), 58–60 (2010).
[CrossRef] [PubMed]

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys.108(12), 123110 (2010).
[CrossRef]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17(18), 15481–15490 (2009).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Liu, Y.

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Manikandan, N.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

Marandi, A.

Mauricio, J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

Maze, G.

Mazé, G.

McCarthy, J. E.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett.7(9), 666–672 (2010).
[CrossRef]

Menyuk, C. R.

Messaddeq, Y.

Michalska, M.

Monro, T. M.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
[CrossRef]

Mori, A.

G. Qin, X. Yan, M. Liao, A. Mori, T. Suzuki, and Y. Ohishi, “Wideband supercontinuum generation in tapered tellurite microstructured fibers,” Laser Phys.21(6), 1115–1121 (2011).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys.107(4), 043108 (2010).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett.35(2), 136–138 (2010).
[CrossRef] [PubMed]

Nagashima, T.

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Norwood, R. A.

Ohishi, Y.

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
[CrossRef] [PubMed]

G. Qin, X. Yan, M. Liao, A. Mori, T. Suzuki, and Y. Ohishi, “Wideband supercontinuum generation in tapered tellurite microstructured fibers,” Laser Phys.21(6), 1115–1121 (2011).
[CrossRef]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett.35(2), 136–138 (2010).
[CrossRef] [PubMed]

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett.35(1), 58–60 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys.107(4), 043108 (2010).
[CrossRef]

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys.108(12), 123110 (2010).
[CrossRef]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17(18), 15481–15490 (2009).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Omenetto, F. G.

Petropoulos, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Peyghambarian, N.

Plotnichenko, V. G.

Polacchini, C. F.

Poletti, F.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Poulain, M.

Price, J. H. V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Pysz, D.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett.7(9), 666–672 (2010).
[CrossRef]

Qin, G.

G. Qin, X. Yan, M. Liao, A. Mori, T. Suzuki, and Y. Ohishi, “Wideband supercontinuum generation in tapered tellurite microstructured fibers,” Laser Phys.21(6), 1115–1121 (2011).
[CrossRef]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys.107(4), 043108 (2010).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett.35(2), 136–138 (2010).
[CrossRef] [PubMed]

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett.35(1), 58–60 (2010).
[CrossRef] [PubMed]

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys.108(12), 123110 (2010).
[CrossRef]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17(18), 15481–15490 (2009).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Renversez, G.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Richardson, D. J.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett.41(14), 795–797 (2005).
[CrossRef]

Richardson, K.

Rivero, C.

Roelens, M. A.

Rudy, C. W.

Russell, P. S.

Sanders, S. T.

S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75(6–7), 799–802 (2002).
[CrossRef]

Sanghera, J. S.

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256–257, 6–16 (1999).
[CrossRef]

Savelii, I.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

Schmidt, M. A.

Schulte, A.

Shaw, L. B.

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Shen, H.

Shen, H. M.

Skripatchev, I.

Smektala, F.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater.3(3), 187–203 (1994).
[CrossRef]

Sohler, W.

Sotobayashi, H.

Stark, S. P.

Stegeman, G.

Stegeman, R.

Stepien, R.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett.7(9), 666–672 (2010).
[CrossRef]

Sugimoto, N.

Suzuki, T.

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
[CrossRef] [PubMed]

G. Qin, X. Yan, M. Liao, A. Mori, T. Suzuki, and Y. Ohishi, “Wideband supercontinuum generation in tapered tellurite microstructured fibers,” Laser Phys.21(6), 1115–1121 (2011).
[CrossRef]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys.107(4), 043108 (2010).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett.35(2), 136–138 (2010).
[CrossRef] [PubMed]

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett.35(1), 58–60 (2010).
[CrossRef] [PubMed]

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys.108(12), 123110 (2010).
[CrossRef]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17(18), 15481–15490 (2009).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Swiderski, J.

Szpulak, M.

Taghizadeh, M. R.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett.7(9), 666–672 (2010).
[CrossRef]

Taira, K.

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett.38(4), 166–167 (2002).
[CrossRef]

Terry, F. L.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express15(3), 865–871 (2007).
[CrossRef] [PubMed]

Troles, J.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

R. Cherif, A. Ben Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for mid-infrared supercontinuum generation,” Opt. Eng.49, 095002 (2010).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Tverjanovich, A. S.

Vodopyanov, K. L.

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater.3(3), 187–203 (1994).
[CrossRef]

Waddie, A. J.

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett.7(9), 666–672 (2010).
[CrossRef]

Wang, A.

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater.3(3), 187–203 (1994).
[CrossRef]

Wei, C.

Winful, H. G.

Wolchover, N. A.

Wondraczek, L.

Xia, C.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express15(3), 865–871 (2007).
[CrossRef] [PubMed]

Xu, Z.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

Yan, X.

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
[CrossRef] [PubMed]

G. Qin, X. Yan, M. Liao, A. Mori, T. Suzuki, and Y. Ohishi, “Wideband supercontinuum generation in tapered tellurite microstructured fibers,” Laser Phys.21(6), 1115–1121 (2011).
[CrossRef]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett.35(2), 136–138 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys.107(4), 043108 (2010).
[CrossRef]

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett.35(1), 58–60 (2010).
[CrossRef] [PubMed]

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys.108(12), 123110 (2010).
[CrossRef]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17(18), 15481–15490 (2009).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Yeom, D. I.

Zakel, A.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

Zghal, M.

R. Cherif, A. Ben Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for mid-infrared supercontinuum generation,” Opt. Eng.49, 095002 (2010).
[CrossRef]

Zheng, X.

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

Zhu, X.

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

Annu. Rev. Mater. Res. (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
[CrossRef]

Appl. Phys. B (1)

S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75(6–7), 799–802 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Electron. Lett. (2)

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett.38(4), 166–167 (2002).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett.41(14), 795–797 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

Int. J. Appl. Glass. Sci. (1)

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass. Sci.1(1), 74–86 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc.78(10), 2828–2830 (1995).
[CrossRef]

J. Appl. Phys. (2)

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys.107(4), 043108 (2010).
[CrossRef]

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys.108(12), 123110 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256–257, 6–16 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Laser Phys. (1)

G. Qin, X. Yan, M. Liao, A. Mori, T. Suzuki, and Y. Ohishi, “Wideband supercontinuum generation in tapered tellurite microstructured fibers,” Laser Phys.21(6), 1115–1121 (2011).
[CrossRef]

Laser Phys. Lett. (1)

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass,” Laser Phys. Lett.7(9), 666–672 (2010).
[CrossRef]

Meas. Sci. Technol. (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.9(4), 545–562 (1998).
[CrossRef] [PubMed]

Opt. Eng. (1)

R. Cherif, A. Ben Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for mid-infrared supercontinuum generation,” Opt. Eng.49, 095002 (2010).
[CrossRef]

Opt. Express (12)

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express15(3), 865–871 (2007).
[CrossRef] [PubMed]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011).
[CrossRef] [PubMed]

J. Gopinath, H. Shen, H. Sotobayashi, E. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 microm,” Opt. Express12(23), 5697–5702 (2004).
[CrossRef] [PubMed]

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express21(7), 7851–7857 (2013).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17(18), 15481–15490 (2009).
[CrossRef] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express20(22), 24218–24225 (2012).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

Opt. Lett. (8)

D. I. Yeom, E. C. Mägi, M. R. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett.33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012).
[CrossRef] [PubMed]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er(3+)-doped ZBLAN fiber laser at 2.8 μm,” Opt. Lett.37(18), 3849–3851 (2012).
[CrossRef] [PubMed]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett.37(18), 3747–3749 (2012).
[CrossRef] [PubMed]

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett.35(1), 58–60 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett.35(2), 136–138 (2010).
[CrossRef] [PubMed]

K.-D. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett.34(4), 470–472 (2009).
[CrossRef] [PubMed]

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt. Lett.28(13), 1126–1128 (2003).
[CrossRef] [PubMed]

Opt. Mater. (2)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater.3(3), 187–203 (1994).
[CrossRef]

I. Savelii, J. C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J. M. Dudley, J. Troles, L. Brilland, G. Renversez, and F. Smektala, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater.33(11), 1661–1666 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Other (6)

“FIMMWAVE Version 4.06,” Photon Design, Dec. 2002.

http://www.npphotonics.com/

http://www.coractive.com/

A. Ben-Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” Proc. PIERS, 1256–1260, Marrakesh, Morocco (2011).

P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, 1991).

http://www.nktphotonics.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

The spectra of SCs generated in a 60 cm conventional tellurite fiber pumped by 12 kW 800 fs pulses at 2.78 μm (blue solid curve) and 2 μm (red dash-dot curve). The spectra of 2 µm and 2.78 µm input pulses are shown by the dash-dot magenta and the green solid curves, respectively. The grey dashed line indicates the ZDW of 2.32 μm. Inset: propagation loss of the single mode tellurite fiber in a wavelength range of 0.5-5 μm.

Fig. 2
Fig. 2

The spectral evolution of (a) the 2 μm and (b) the 2.78 μm 12 kW 800 fs pulses propagating in a 60 cm tellurite fiber with a ZDW of 2.32 µm.

Fig. 3
Fig. 3

The refractive index profile of the proposed W-type tellurite fiber (r1 = 2.81 µm, r2 = 4 µm, Δn1 = 0.70%, and Δn2 = 0.38%).

Fig. 4
Fig. 4

Material dispersion (red dash-dot curve), waveguide dispersion (blue curve), and total chromatic dispersion (magenta dotted curve) of the designed W-type tellurite fiber in a wavelength range of 2-3.1 μm. The grey dashed line illustrates zero dispersion. Inset: (a) 3-D and (b) 2-D intensity distribution of the fundamental mode of the W-type tellurite fiber.

Fig. 5
Fig. 5

The SC generated in 60 cm tellurite fibers with ZDWs of 2.32 µm (red solid curve), 2.7 µm (black dashed curve), and 2.9 µm (blue dash-dot curve), respectively. The 2.78 μm pump pulses (green solid curve) have a duration of 800 fs and a peak power of 12 kW.

Fig. 6
Fig. 6

The spectral evolutions of 2.78 μm pulses along the 60 cm tellurite fibers with ZDWs of (a) 2.7 µm and (b) 2.9 µm, respectively. (Pump pulse duration: 800 fs; peak power: 12 kW). The white dashed lines represent the ZDWs.

Fig. 7
Fig. 7

Power proportion of the laser with wavelength > 3 μm (black curve) and the long wavelength edge (blue curve) of the SC as a function of the peak power of 1.6 ps pump pulses.

Fig. 8
Fig. 8

Proportion of SC laser power with wavelength > 3 µm (black curve) and the long wavelength edge (blue curve) of the SC as a function of the input pulse duration of a pump pulse with peak pump of 12 kW.

Fig. 9
Fig. 9

Sustainable power as a function of effective core area of the tellurite fiber. The red cross represents the handling power of the proposed W-type tellurite fiber. The green dots represent the handling power of the fibers used in previous works.

Fig. 10
Fig. 10

Chromatic dispersion of the designed As2Se3 PCF as a function of wavelength. Black solid curve: waveguide dispersion; blue dash-dot curve: material dispersion; red dotted curve: total chromatic dispersion. The grey dashed line represents zero dispersion. Inset: (a) 3-D and (b) 2-D near-field distribution of the fundamental mode of the designed As2Se3 PCF (r = 0.61 µm, Λ = 3 µm).

Fig. 11
Fig. 11

(a) Output spectrum of the SC generated in a 10 cm As2Se3 PCF with 2.7 µm ZDW pumped at 2.78 μm. Inset: Propagation loss of a single-mode As2Se3 fiber in a wavelength range of 1.5-12 μm. (b) The SC spectral evolution in the 10 cm As2Se3 PCF. (Input pulse duration: 800 fs; peak power: 1 kW).

Fig. 12
Fig. 12

Power proportion of the light beyond 3 μm contained in the SC (black curve) and the long wavelength edge (blue curve) of the SC as a function of the input pulse duration. (Peak power: 1 kW; fiber length: 10cm).

Fig. 13
Fig. 13

Power proportion of the light beyond 3 μm contained in the SC (black curve) and the long wavelength edge (blue curve) of the SC as a function of the input peak power. (Pulse duration: 800 fs; fiber length: 10 cm).

Fig. 14
Fig. 14

Chromatic dispersion of two As2Se3 PCFs with r/Λ = 0.484 (black solid curve) and 0.347 (red dash-dot curve) as a function of the wavelength. Inset: the fundamental mode profiles of the PCF with r/Λ = 0.484 (a) and 0.347 (b) at the pump wavelengths of 1.5 µm and 2 µm, respectively. The dashed line represents the zero dispersion.

Fig. 15
Fig. 15

Sustainable power as a function of effective area of the chalcogenide PCF. The marked red crosses represent the handling power of the PCFs with different ZDWs by assuming an optical-to-optical conversion efficiency of 60% [48]. The green dots represent the handling powers of these chalcogenide fibers used in previous works.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A(z,t) z = α 2 A(z,t)+ m2 i m+1 m! β m m A(z,t) t m +iγ(1+ i ω 0 t )×(A(z,t) + R(t') | A(z,tt') | 2 dt')
γ= n 2 ω 0 /(c A eff )
R(t)=(1 f R )δ(t)+ f R h R (t)
N= (γ P 0 T 0 2 /| β 2 |) 1/2 ,

Metrics