Abstract

A novel technique for the electronically-controllable generation and switching of transverse modes within a multi-mode fiber laser oscillator is presented. Preliminary results demonstrate individual transverse mode lasing and fast switching between modes with watt-level output powers. When applied to a core-pumped Tm-doped silica fiber laser with a multimode core the fundamental mode (LP01), the next higher order mode (LP11), or a donut-shaped LP11 superposition were selectively excited with power levels in excess of 5 W. Fast switching between LP01 and LP11 modes at up to 20kHz was also realized.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel technique for mode selection in a multimode fiber laser

J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson
Opt. Express 19(13) 12434-12439 (2011)

Transverse mode selection in a Nd-doped fiber amplifier at 910 nm

Baptiste Leconte, Hervé Gilles, Thierry Robin, Benoit Cadier, and Mathieu Laroche
Opt. Express 25(15) 18314-18319 (2017)

Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers

Mali Gong, Yanyang Yuan, Chen Li, Ping Yan, Haitao Zhang, and Suying Liao
Opt. Express 15(6) 3236-3246 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63 (2010).
    [Crossref]
  2. J. M. Fini and J. W. Nicholson, “Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics,” Opt. Express 21(16), 19173–19179 (2013).
    [Crossref] [PubMed]
  3. J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
    [Crossref]
  4. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [Crossref] [PubMed]
  5. J. C. Knight, T. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347 (1998).
    [Crossref]
  6. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
    [Crossref]
  7. J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748–750 (2007).
    [Crossref] [PubMed]
  8. V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
    [Crossref]
  9. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
    [Crossref]
  10. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photon. Rev. 6(5), 607–621 (2012).
    [Crossref]
  11. N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
    [Crossref]
  12. J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011).
    [Crossref] [PubMed]
  13. F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J. Steckman, “Volume holographic grating-based continuously tunable optical filter,” Opt. Eng. 43(9), 2017 (2004).
    [Crossref]
  14. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. 18(2), 230–235 (2000).
    [Crossref]
  15. A. W. Snyder and W. R. Young, “Modes of optical waveguides,” J. Opt. Soc. Am. 68(3), 297 (1978).
    [Crossref]

2013 (1)

2012 (2)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photon. Rev. 6(5), 607–621 (2012).
[Crossref]

2011 (1)

2010 (1)

2008 (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

2007 (3)

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748–750 (2007).
[Crossref] [PubMed]

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

2004 (1)

F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J. Steckman, “Volume holographic grating-based continuously tunable optical filter,” Opt. Eng. 43(9), 2017 (2004).
[Crossref]

2000 (2)

1999 (1)

V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

1998 (1)

J. C. Knight, T. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347 (1998).
[Crossref]

1978 (1)

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photon. Rev. 6(5), 607–621 (2012).
[Crossref]

Audouard, E.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Birks, T.

J. C. Knight, T. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347 (1998).
[Crossref]

Chan, J. S. P.

Clarkson, W. A.

Cregan, R. F.

J. C. Knight, T. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347 (1998).
[Crossref]

Daniel, J. M. O.

de Sandro, J.-P.

J. C. Knight, T. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347 (1998).
[Crossref]

Djambova, T. V.

Duocastella, M.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photon. Rev. 6(5), 607–621 (2012).
[Crossref]

Eidam, T.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Fini, J. M.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Goldberg, L.

Gupta, S.

Havermeyer, F.

F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J. Steckman, “Volume holographic grating-based continuously tunable optical filter,” Opt. Eng. 43(9), 2017 (2004).
[Crossref]

Huignard, J.-P.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Huot, N.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Ibsen, M.

Jansen, F.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Jauregui, C.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Kim, J. W.

Kliner, D. A. V.

Knight, J. C.

J. C. Knight, T. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347 (1998).
[Crossref]

Koplow, J. P.

Larat, C.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Limpert, J.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Liu, W.

F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J. Steckman, “Volume holographic grating-based continuously tunable optical filter,” Opt. Eng. 43(9), 2017 (2004).
[Crossref]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Mizunami, T.

Moser, C.

F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J. Steckman, “Volume holographic grating-based continuously tunable optical filter,” Opt. Eng. 43(9), 2017 (2004).
[Crossref]

Nesterov, A.

V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

Nicholson, J. W.

J. M. Fini and J. W. Nicholson, “Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics,” Opt. Express 21(16), 19173–19179 (2013).
[Crossref] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Niiho, T.

Nilsson, J.

Niziev, V.

V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

Otto, H.-J.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Psaltis, D.

F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J. Steckman, “Volume holographic grating-based continuously tunable optical filter,” Opt. Eng. 43(9), 2017 (2004).
[Crossref]

Ramachandran, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748–750 (2007).
[Crossref] [PubMed]

Richardson, D. J.

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Russell, P. S. J.

J. C. Knight, T. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347 (1998).
[Crossref]

Sahu, J. K.

Sanner, N.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Snyder, A. W.

Steckman, G. J.

F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J. Steckman, “Volume holographic grating-based continuously tunable optical filter,” Opt. Eng. 43(9), 2017 (2004).
[Crossref]

Stutzki, F.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Tünnermann, A.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Young, W. R.

Appl. Phys., A Mater. Sci. Process. (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Electron. Lett. (1)

J. C. Knight, T. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347 (1998).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

Laser Photon. Rev. (2)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photon. Rev. 6(5), 607–621 (2012).
[Crossref]

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Opt. Eng. (1)

F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J. Steckman, “Volume holographic grating-based continuously tunable optical filter,” Opt. Eng. 43(9), 2017 (2004).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Opt. Lett. (2)

Supplementary Material (2)

» Media 1: MP4 (3063 KB)     
» Media 2: MP4 (3795 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental layout of cladding-pumped Tm-doped fiber laser.

Fig. 2
Fig. 2

Output beam profile for AOTF tuned to (a) LP01 mode and (b) LP11 mode superposition.

Fig. 3
Fig. 3

Laser output power for LP01 (blue) and LP11-donut (red) modes.

Fig. 4
Fig. 4

Output spectrum and corresponding beam profiles when tuned to the LP11 mode group with solid etalon used for fine wavelength selection.

Fig. 5
Fig. 5

Laser output time profiles for mode switching speeds of (a) 1kHz, (b) 10kHz and (c) 20kHz. A volume Bragg grating was used to spectrally separate the output of the two modes with top row showing the LP11-donut component of the laser output and bottom row showing LP01 component.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ=2nΛcos(θ)
λ FBG =2 n eff Λ FBG

Metrics