Abstract

It has been shown in literature that cross-shaped holes arrays can be made insensitive to polarization at normal incidence, and can even feature good stability for off-normal incidence. In this work we look for the optimal design rules to obtain high spectral stability conditions in the visible for those structures, through a complete review of all geometrical parameters using CMOS-compatible materials. Rigorous Coupled Wave Analysis (RCWA) simulations have been used to identify the most-impacting parameters and to determine typical ranges allowing for the realization of low-color errors image sensors whatever the light incidence. It appears that the two main parameters are the ratio of the arm width to the arm length of the crosses and the distance between crosses, which both have to be low to ensure stable responses of the filters. We demonstrate the results with CIE chromaticity diagrams reporting the responses of a RGB filter designed with the established rules under various illumination conditions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  2. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
    [CrossRef]
  3. F. J. Garciá-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
    [CrossRef]
  4. S. Enoch and N. Bonod, Plasmonics: from Basics to Advanced Topics (Springer, 2012), Chap. 3–4.
  5. P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-wavelength metallic surfaces,” Surf. Sci. Rep.64(10), 453–469 (2009).
    [CrossRef]
  6. R. Fontaine, “Recent innovations in CMOS image sensors,” in Proceedings of IEEE of the 22nd Annual SEMI/IEEE Advanced Semiconductor Manufacturing Conference ASMC (May 2011), 1–5.
  7. D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett.86(25), 253107 (2005).
    [CrossRef]
  8. Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
    [CrossRef]
  9. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
    [CrossRef] [PubMed]
  10. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
    [CrossRef]
  11. A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite arrays of slits,” Phys. Rev. B76(23), 235430 (2007).
    [CrossRef]
  12. Y. T. Yoon, S. S. Lee, and B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nano. Fund. Appl.10(1), 54–59 (2012).
    [CrossRef]
  13. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
    [CrossRef] [PubMed]
  14. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85(19), 4316 (2004).
    [CrossRef]
  15. A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).
  16. J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys.107(7), 073101 (2010).
    [CrossRef]
  17. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipersl, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(12), 183901 (2004).
    [CrossRef] [PubMed]
  18. A. Degiron and T. W. Ebbesen, “The role of localized surface Plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005).
    [CrossRef]
  19. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011).
    [CrossRef]
  20. S. Landis, P. Brianceau, N. Chaix, Y. Desieres, V. Reboud, and M. Argoud, “Metallic colour filtering arrays manufactured by NanoImprint Lithography,” Microelectron. Eng.111, 193–198 (2013).
    [CrossRef]
  21. Y. Tang, B. Vlahovic, and D. J. Brady, “Metallic nano-structures for polarization-independent multi-spectral filters,” Nanoscale Res. Lett.6(1), 394 (2011).
    [CrossRef] [PubMed]
  22. L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009).
    [CrossRef]
  23. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express18(13), 14056–14062 (2010).
    [CrossRef] [PubMed]
  24. L. Lin and A. Roberts, “Angle-robust resonances in cross-shaped aperture arrays,” Appl. Phys. Lett.97(6), 061109 (2010).
    [CrossRef]
  25. P. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
    [CrossRef]
  26. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B77(7), 075401 (2008).
    [CrossRef]
  27. Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett.24(3), 197–199 (2012).
    [CrossRef]
  28. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett.12(8), 4349–4354 (2012).
    [CrossRef] [PubMed]
  29. D. Lerose, E. K. Hei, B. C. Ching, M. Sterger, L. C. Yaw, F. M. Schulze, F. Schmidt, A. Schmidt, and K. Bach, “CMOS-integrated geometrically tunable optical filters,” Appl. Opt.52(8), 1655–1662 (2013).
    [CrossRef] [PubMed]
  30. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
    [CrossRef]
  31. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001).
    [CrossRef]
  32. U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express20(6), 6340–6347 (2012).
    [CrossRef] [PubMed]
  33. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier 1998).
  34. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effect of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett.81(23), 4327 (2002).
    [CrossRef]
  35. J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94(18), 181104 (2009).
    [CrossRef]
  36. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
    [CrossRef] [PubMed]
  37. J. Bravo-Abad, L. Martìn-Moreno, F. J. Garcìa-Vidal, E. Hendry, and J. Gòmez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B76(24), 241102 (2007).
    [CrossRef]

2013

S. Landis, P. Brianceau, N. Chaix, Y. Desieres, V. Reboud, and M. Argoud, “Metallic colour filtering arrays manufactured by NanoImprint Lithography,” Microelectron. Eng.111, 193–198 (2013).
[CrossRef]

D. Lerose, E. K. Hei, B. C. Ching, M. Sterger, L. C. Yaw, F. M. Schulze, F. Schmidt, A. Schmidt, and K. Bach, “CMOS-integrated geometrically tunable optical filters,” Appl. Opt.52(8), 1655–1662 (2013).
[CrossRef] [PubMed]

2012

U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express20(6), 6340–6347 (2012).
[CrossRef] [PubMed]

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett.24(3), 197–199 (2012).
[CrossRef]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett.12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Y. T. Yoon, S. S. Lee, and B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nano. Fund. Appl.10(1), 54–59 (2012).
[CrossRef]

2011

Y. Tang, B. Vlahovic, and D. J. Brady, “Metallic nano-structures for polarization-independent multi-spectral filters,” Nanoscale Res. Lett.6(1), 394 (2011).
[CrossRef] [PubMed]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011).
[CrossRef]

2010

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express18(13), 14056–14062 (2010).
[CrossRef] [PubMed]

L. Lin and A. Roberts, “Angle-robust resonances in cross-shaped aperture arrays,” Appl. Phys. Lett.97(6), 061109 (2010).
[CrossRef]

P. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys.107(7), 073101 (2010).
[CrossRef]

F. J. Garciá-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

2009

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-wavelength metallic surfaces,” Surf. Sci. Rep.64(10), 453–469 (2009).
[CrossRef]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009).
[CrossRef]

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94(18), 181104 (2009).
[CrossRef]

2008

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B77(7), 075401 (2008).
[CrossRef]

2007

J. Bravo-Abad, L. Martìn-Moreno, F. J. Garcìa-Vidal, E. Hendry, and J. Gòmez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B76(24), 241102 (2007).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).

A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite arrays of slits,” Phys. Rev. B76(23), 235430 (2007).
[CrossRef]

2005

A. Degiron and T. W. Ebbesen, “The role of localized surface Plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005).
[CrossRef]

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett.86(25), 253107 (2005).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
[CrossRef] [PubMed]

2004

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipersl, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(12), 183901 (2004).
[CrossRef] [PubMed]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85(19), 4316 (2004).
[CrossRef]

2002

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effect of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett.81(23), 4327 (2002).
[CrossRef]

2001

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

1999

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1981

1944

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
[CrossRef]

Argoud, M.

S. Landis, P. Brianceau, N. Chaix, Y. Desieres, V. Reboud, and M. Argoud, “Metallic colour filtering arrays manufactured by NanoImprint Lithography,” Microelectron. Eng.111, 193–198 (2013).
[CrossRef]

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett.12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Bach, K.

Barnes, W. L.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effect of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett.81(23), 4327 (2002).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
[CrossRef]

Bishop, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

Blair, S.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

Boltasseva, A.

P. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Brady, D. J.

Y. Tang, B. Vlahovic, and D. J. Brady, “Metallic nano-structures for polarization-independent multi-spectral filters,” Nanoscale Res. Lett.6(1), 394 (2011).
[CrossRef] [PubMed]

Bravo-Abad, J.

J. Bravo-Abad, L. Martìn-Moreno, F. J. Garcìa-Vidal, E. Hendry, and J. Gòmez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B76(24), 241102 (2007).
[CrossRef]

Brianceau, P.

S. Landis, P. Brianceau, N. Chaix, Y. Desieres, V. Reboud, and M. Argoud, “Metallic colour filtering arrays manufactured by NanoImprint Lithography,” Microelectron. Eng.111, 193–198 (2013).
[CrossRef]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett.12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Chaix, N.

S. Landis, P. Brianceau, N. Chaix, Y. Desieres, V. Reboud, and M. Argoud, “Metallic colour filtering arrays manufactured by NanoImprint Lithography,” Microelectron. Eng.111, 193–198 (2013).
[CrossRef]

Chen, Q.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett.24(3), 197–199 (2012).
[CrossRef]

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express18(13), 14056–14062 (2010).
[CrossRef] [PubMed]

Chen, S. C.

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett.86(25), 253107 (2005).
[CrossRef]

Ching, B. C.

Chitnis, D.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett.24(3), 197–199 (2012).
[CrossRef]

Collins, S.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett.24(3), 197–199 (2012).
[CrossRef]

Cumming, D. R. S.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett.24(3), 197–199 (2012).
[CrossRef]

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express18(13), 14056–14062 (2010).
[CrossRef] [PubMed]

Degiron, A.

A. Degiron and T. W. Ebbesen, “The role of localized surface Plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effect of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett.81(23), 4327 (2002).
[CrossRef]

Desieres, Y.

S. Landis, P. Brianceau, N. Chaix, Y. Desieres, V. Reboud, and M. Argoud, “Metallic colour filtering arrays manufactured by NanoImprint Lithography,” Microelectron. Eng.111, 193–198 (2013).
[CrossRef]

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94(18), 181104 (2009).
[CrossRef]

Drysdale, T. D.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett.24(3), 197–199 (2012).
[CrossRef]

Ebbesen, T. W.

F. J. Garciá-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

A. Degiron and T. W. Ebbesen, “The role of localized surface Plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effect of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett.81(23), 4327 (2002).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Emani, N.

P. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Enoch, S.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipersl, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(12), 183901 (2004).
[CrossRef] [PubMed]

Espiau de Lamaestre, R.

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94(18), 181104 (2009).
[CrossRef]

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite arrays of slits,” Phys. Rev. B76(23), 235430 (2007).
[CrossRef]

Fontaine, R.

R. Fontaine, “Recent innovations in CMOS image sensors,” in Proceedings of IEEE of the 22nd Annual SEMI/IEEE Advanced Semiconductor Manufacturing Conference ASMC (May 2011), 1–5.

Fu, J. X.

J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys.107(7), 073101 (2010).
[CrossRef]

Fujikawa, H.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011).
[CrossRef]

Garciá-Vidal, F. J.

F. J. Garciá-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

García-Vidal, F. J.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B77(7), 075401 (2008).
[CrossRef]

A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite arrays of slits,” Phys. Rev. B76(23), 235430 (2007).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Garcìa-Vidal, F. J.

J. Bravo-Abad, L. Martìn-Moreno, F. J. Garcìa-Vidal, E. Hendry, and J. Gòmez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B76(24), 241102 (2007).
[CrossRef]

Gaylord, T. K.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Gòmez Rivas, J.

J. Bravo-Abad, L. Martìn-Moreno, F. J. Garcìa-Vidal, E. Hendry, and J. Gòmez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B76(24), 241102 (2007).
[CrossRef]

Hande, L. B.

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009).
[CrossRef]

Hei, E. K.

Hendry, E.

J. Bravo-Abad, L. Martìn-Moreno, F. J. Garcìa-Vidal, E. Hendry, and J. Gòmez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B76(24), 241102 (2007).
[CrossRef]

Herron, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Hua, Y. L.

J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys.107(7), 073101 (2010).
[CrossRef]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-wavelength metallic surfaces,” Surf. Sci. Rep.64(10), 453–469 (2009).
[CrossRef]

Ikeda, N.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011).
[CrossRef]

Inoue, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011).
[CrossRef]

Ishii, S.

P. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Jovanov, V.

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001).
[CrossRef]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Klein Koerkamp, K. J.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipersl, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(12), 183901 (2004).
[CrossRef] [PubMed]

Knipp, D.

Koide, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011).
[CrossRef]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001).
[CrossRef]

Kuipers, L.

F. J. Garciá-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85(19), 4316 (2004).
[CrossRef]

Kuipersl, L.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipersl, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(12), 183901 (2004).
[CrossRef] [PubMed]

Kurz, H.

Lalanne, P.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-wavelength metallic surfaces,” Surf. Sci. Rep.64(10), 453–469 (2009).
[CrossRef]

Landis, S.

S. Landis, P. Brianceau, N. Chaix, Y. Desieres, V. Reboud, and M. Argoud, “Metallic colour filtering arrays manufactured by NanoImprint Lithography,” Microelectron. Eng.111, 193–198 (2013).
[CrossRef]

Le Perchec, J.

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94(18), 181104 (2009).
[CrossRef]

Lee, B. S.

Y. T. Yoon, S. S. Lee, and B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nano. Fund. Appl.10(1), 54–59 (2012).
[CrossRef]

Lee, S. S.

Y. T. Yoon, S. S. Lee, and B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nano. Fund. Appl.10(1), 54–59 (2012).
[CrossRef]

Lerose, D.

Lezec, H. J.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effect of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett.81(23), 4327 (2002).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, J. Y.

J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys.107(7), 073101 (2010).
[CrossRef]

Li, Z. Y.

J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys.107(7), 073101 (2010).
[CrossRef]

Lin, L.

L. Lin and A. Roberts, “Angle-robust resonances in cross-shaped aperture arrays,” Appl. Phys. Lett.97(6), 061109 (2010).
[CrossRef]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009).
[CrossRef]

Liu, H. T.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-wavelength metallic surfaces,” Surf. Sci. Rep.64(10), 453–469 (2009).
[CrossRef]

Liu, Y.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

Martín-Moreno, L.

F. J. Garciá-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B77(7), 075401 (2008).
[CrossRef]

A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite arrays of slits,” Phys. Rev. B76(23), 235430 (2007).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001).
[CrossRef]

Martìn-Moreno, L.

J. Bravo-Abad, L. Martìn-Moreno, F. J. Garcìa-Vidal, E. Hendry, and J. Gòmez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B76(24), 241102 (2007).
[CrossRef]

Mary, A.

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).

Miura, A.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011).
[CrossRef]

Moharam, M. G.

Moreno, E.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
[CrossRef] [PubMed]

Naik, G.

P. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Nomura, T.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011).
[CrossRef]

Obermeyer, P.

Palanchoke, U.

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001).
[CrossRef]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Porto, J. A.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Reboud, V.

S. Landis, P. Brianceau, N. Chaix, Y. Desieres, V. Reboud, and M. Argoud, “Metallic colour filtering arrays manufactured by NanoImprint Lithography,” Microelectron. Eng.111, 193–198 (2013).
[CrossRef]

Roberts, A.

L. Lin and A. Roberts, “Angle-robust resonances in cross-shaped aperture arrays,” Appl. Phys. Lett.97(6), 061109 (2010).
[CrossRef]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009).
[CrossRef]

Rodrigo, S. G.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B77(7), 075401 (2008).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).

Sato, K.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011).
[CrossRef]

Schmidt, A.

Schmidt, F.

Schulze, F. M.

Segerink, F. B.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipersl, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(12), 183901 (2004).
[CrossRef] [PubMed]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85(19), 4316 (2004).
[CrossRef]

Shalaev, V. M.

P. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Shao, D. B.

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett.86(25), 253107 (2005).
[CrossRef]

Sterger, M.

Stiebig, H.

Sugimoto, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011).
[CrossRef]

Tang, Y.

Y. Tang, B. Vlahovic, and D. J. Brady, “Metallic nano-structures for polarization-independent multi-spectral filters,” Nanoscale Res. Lett.6(1), 394 (2011).
[CrossRef] [PubMed]

Thio, T.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Tsuya, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011).
[CrossRef]

van der Molen, K. L.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85(19), 4316 (2004).
[CrossRef]

van Hulst, N. F.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85(19), 4316 (2004).
[CrossRef]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipersl, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(12), 183901 (2004).
[CrossRef] [PubMed]

Vlahovic, B.

Y. Tang, B. Vlahovic, and D. J. Brady, “Metallic nano-structures for polarization-independent multi-spectral filters,” Nanoscale Res. Lett.6(1), 394 (2011).
[CrossRef] [PubMed]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Walls, K.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett.24(3), 197–199 (2012).
[CrossRef]

Wang, B.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-wavelength metallic surfaces,” Surf. Sci. Rep.64(10), 453–469 (2009).
[CrossRef]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Williams, L.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Yaw, L. C.

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett.12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Yoon, Y. T.

Y. T. Yoon, S. S. Lee, and B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nano. Fund. Appl.10(1), 54–59 (2012).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett.86(25), 253107 (2005).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85(19), 4316 (2004).
[CrossRef]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011).
[CrossRef]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009).
[CrossRef]

L. Lin and A. Roberts, “Angle-robust resonances in cross-shaped aperture arrays,” Appl. Phys. Lett.97(6), 061109 (2010).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effect of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett.81(23), 4327 (2002).
[CrossRef]

J. Le Perchec, Y. Desieres, and R. Espiau de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94(18), 181104 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett.24(3), 197–199 (2012).
[CrossRef]

J. Appl. Phys.

J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys.107(7), 073101 (2010).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

A. Degiron and T. W. Ebbesen, “The role of localized surface Plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005).
[CrossRef]

J. Opt. Soc. Am.

Laser Photon. Rev.

P. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Microelectron. Eng.

S. Landis, P. Brianceau, N. Chaix, Y. Desieres, V. Reboud, and M. Argoud, “Metallic colour filtering arrays manufactured by NanoImprint Lithography,” Microelectron. Eng.111, 193–198 (2013).
[CrossRef]

Nano Lett.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett.12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Nanoscale Res. Lett.

Y. Tang, B. Vlahovic, and D. J. Brady, “Metallic nano-structures for polarization-independent multi-spectral filters,” Nanoscale Res. Lett.6(1), 394 (2011).
[CrossRef] [PubMed]

Nanotechnology

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology15(9), 1368–1374 (2004).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001).
[CrossRef]

Opt. Express

Photon. Nano. Fund. Appl.

Y. T. Yoon, S. S. Lee, and B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nano. Fund. Appl.10(1), 54–59 (2012).
[CrossRef]

Phys. Rev.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
[CrossRef]

Phys. Rev. B

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).

J. Bravo-Abad, L. Martìn-Moreno, F. J. Garcìa-Vidal, E. Hendry, and J. Gòmez Rivas, “Transmission of light through periodic arrays of square holes: from a metallic wire mesh to an array of tiny holes,” Phys. Rev. B76(24), 241102 (2007).
[CrossRef]

A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite arrays of slits,” Phys. Rev. B76(23), 235430 (2007).
[CrossRef]

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B77(7), 075401 (2008).
[CrossRef]

Phys. Rev. Lett.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipersl, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(12), 183901 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Rev. Mod. Phys.

F. J. Garciá-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Surf. Sci. Rep.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-wavelength metallic surfaces,” Surf. Sci. Rep.64(10), 453–469 (2009).
[CrossRef]

Other

R. Fontaine, “Recent innovations in CMOS image sensors,” in Proceedings of IEEE of the 22nd Annual SEMI/IEEE Advanced Semiconductor Manufacturing Conference ASMC (May 2011), 1–5.

S. Enoch and N. Bonod, Plasmonics: from Basics to Advanced Topics (Springer, 2012), Chap. 3–4.

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Scheme of a typical nanostructured metallic filter with an Al layer of thickness hm, filled and surrounded with SiO2. (b) Top view of the filter array, with a period P and crosses of arm length a and arm width b.

Fig. 2
Fig. 2

Spectral responses of filters (P = 150nm, a/P = 0.8, b/a = 0.6, and thus d = 30nm) under two different polarizations and with different incidence angles for (a) φ = 0° and (b) φ = 45° with hm = 50nm. Spectral responses for (c) φ = 0° and (d) φ = 45° with hm = 200nm.

Fig. 3
Fig. 3

Resonance peak position as a function of the incident angle for increasing metal thicknesses at (a) φ = 0° and (b) φ = 45° calculated for the average response between TE and TM polarizations responses. (P = 150nm, a/P = 0.8, b/a = 0.6, and thus d = 30nm).

Fig. 4
Fig. 4

Spectral responses of filters (hm = 75nm, P = 150nm, b/a = 0.6) under two different polarizations and with different incidence angles for (a) φ = 0° and (b) for φ = 45° with a/P = 0.53. Spectral responses for (c) φ = 0° and (d) φ = 45° with a/P = 0.8.

Fig. 5
Fig. 5

Resonance peak position as a function of the incident angle for increasing a/P ratios at (a) φ = 0° and (b) φ = 45° calculated for average polarization.

Fig. 6
Fig. 6

Spectral responses of filters (P = 150nm, hm = 75nm, a/P = 0.8 and thus d = 30nm) under two different polarizations and with different polar incident angles for (a) b/a = 0.4 and φ = 0°. (b) b/a = 0.6 and φ = 0°. (c) b/a = 0.8 and φ = 0°. (d) b/a = 0.4 and φ = 45°. (e) b/a = 0.6 and φ = 45°. (f) b/a = 0.8 and φ = 45°.

Fig. 7
Fig. 7

Electric field norm |(E)| on top surface of the metallic filter (P = 150nm, hm = 75nm, a/P = 0.8 and thus d = 30nm), for normal incidence and TE polarization and for (a) b/a = 0.4 and λ = 475nm. (b) b/a = 0.8 and λ = 330nm .

Fig. 8
Fig. 8

Spectral responses of filters (hm = 75nm, a = 120nm, b/a = 0.6) for both TM and TE polarizations at different polar incident angles for φ = 0° and (a) d = 20nm. (b) d = 50nm. (c) d = 100nm.

Fig. 9
Fig. 9

Spectral responses of a filter (hm = 75nm, a = 120nm, b/a = 0.6) with d = 20nm for both TM and TE polarizations at different polar incident angles and for (a) φ = 0°. (b) φ = 22.5°. (c) φ = 45°.

Fig. 10
Fig. 10

Evolution of the resonance peak shift induced with the polar incident angle θ with mean polarization for different intercrosses distance d, and for different azimuths and two distinct shape factors b/a = 0.4 and b/a = 0.6. Filter dimensions are: hm = 75nm and a = 120nm.

Fig. 11
Fig. 11

Impact of localized resonances (purple areas) and SPPs (arrows) depending on the intercrosses distance d and azimuth φ.

Fig. 12
Fig. 12

(a) Example of RGB filters at normal incidence using small-shape-factor cruciform holes arrays. Blue filter: P = 150nm, hm = 50nm, a/P = 0.6, sf = 0.4. Green filter: P = 150nm, hm = 50nm, a/P = 0.7, sf = 0.25. Red filter: P = 250nm, hm = 50nm, a/P = 0.6, sf = 0.3. (b) CIE diagram representing the color variations of each R,G and B filters when simulated with TM or TE polarizations, with all possible azimuth values and for θЄ[0°,15°] range. (c) for θЄ[0°,30°]. (d) for θЄ[0°,60].

Metrics