Abstract

The role of the Higher-Order Kerr Effects (HOKE) in intensity clamping is experimentally investigated. We fail to observe any evidence of HOKE-based intensity clamping in a tight geometrical focusing experiment. We introduce a polarization-based technique that can distinguish between spectral components from the leading and trailing edges of the pulse. The results of this time-resolved measurement support the ionization theory of intensity clamping.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lontano, G. Lampis, A. Kim, and A. Sergeev, “Intense laser pulse dynamics in dense gases,” Phys. Scr.T63, 141–147 (1996).
    [CrossRef]
  2. P. Monot, T. Auguste, L. Lompré, G. Mainfray, and C. Manus, “Focusing limits of a terawatt laser in an underdense plasma,” JOSA B9(9), 1579–1584 (1992).
    [CrossRef]
  3. S. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun.97(1-2), 25–28 (1993).
    [CrossRef]
  4. S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun.104(4-6), 330–335 (1994).
    [CrossRef]
  5. R. Rankin, C. E. Capjack, N. H. Burnett, and P. B. Corkum, “Refraction effects associated with multiphoton ionization and ultrashort-pulse laser propagation in plasma waveguides,” Opt. Lett.16(11), 835–837 (1991).
    [CrossRef] [PubMed]
  6. S. P. L. Blanc and R. Sauerbrey, “Spectral, temporal, and spatial characteristics of plasma-induced spectral blue shifting and its application to femtosecond pulse measurement,” J. Opt. Soc. Am. B13(1), 72–88 (1996).
    [CrossRef]
  7. M. Ciarrocca, J. P. Marangos, D. D. Burgess, M. H. R. Hutchinson, R. A. Smith, S. C. Rae, and K. Burnett, “Spectral and spatial modifications to an intense 1 μm laser pulse interacting with a dense argon gas,” Opt. Commun.110(3-4), 425–434 (1994).
    [CrossRef]
  8. P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. Marques, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett.82(3), 552–555 (1999).
    [CrossRef]
  9. S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett.29(24), 2837–2839 (2004).
    [CrossRef] [PubMed]
  10. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
    [CrossRef]
  11. J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B71(6), 877–879 (2000).
    [CrossRef]
  12. A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B73(3), 287–290 (2001).
    [CrossRef]
  13. W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun.202(1-3), 189–197 (2002).
    [CrossRef]
  14. G. G. Luther, A. C. Newell, and J. V. Moloney, “The effects of normal dispersion on collapse events,” Physica D74(1-2), 59–73 (1994).
    [CrossRef]
  15. J. K. Ranka and A. L. Gaeta, “Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses,” Opt. Lett.23(7), 534–536 (1998).
    [CrossRef] [PubMed]
  16. J. E. Rothenberg, “Pulse splitting during self-focusing in normally dispersive media,” Opt. Lett.17(8), 583–585 (1992).
    [CrossRef] [PubMed]
  17. A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear X-wave formation by femtosecond filamentation in Kerr media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 016608 (2006).
    [CrossRef] [PubMed]
  18. S. Vlasov, L. Piskunova, and V. Talanov, “Three-dimensional wave collapse in the nonlinear Schrödinger equation model,” Zh. Eksp. Teor. Fiz95, 1945 (1989).
  19. S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A46(2), 1084–1090 (1992).
    [CrossRef] [PubMed]
  20. R. W. Boyd, Nonlinear Optics, 2 ed. (Academic Press, New York, 2003).
  21. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” Quantum Electronics, IEEE Journal of35(12), 1771–1776 (1999).
    [CrossRef]
  22. W. Liu and S. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express13(15), 5750–5755 (2005).
    [CrossRef] [PubMed]
  23. G. Fibich and G. Papanicolaou, “Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension,” SIAM J. Appl. Math.60(1), 183–240 (1999).
    [CrossRef]
  24. P. L. Kelley, “Self-Focusing of Optical Beams,” Phys. Rev. Lett.15(26), 1005–1008 (1965).
    [CrossRef]
  25. V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
    [CrossRef]
  26. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express16(1), 466–493 (2008).
    [CrossRef] [PubMed]
  27. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010).
    [CrossRef] [PubMed]
  28. C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the All-Optical Kerr Effect,” Phys. Rev. Lett.106(18), 183902 (2011).
    [CrossRef] [PubMed]
  29. J. Kasparian, P. Béjot, and J.-P. Wolf, “Arbitrary-order nonlinear contribution to self-steepening,” Opt. Lett.35(16), 2795–2797 (2010).
    [CrossRef] [PubMed]
  30. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express17(16), 13429–13434 (2009).
    [CrossRef] [PubMed]
  31. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components: erratum,” Opt. Express18(3), 3011–3012 (2010).
    [CrossRef]
  32. P. Béjot and J. Kasparian, “Conical emission from laser filaments and higher-order Kerr effect in air,” Opt. Lett.36(24), 4812–4814 (2011).
    [CrossRef] [PubMed]
  33. A. L. Gaeta, “Catastrophic Collapse of Ultrashort Pulses,” Phys. Rev. Lett.84(16), 3582–3585 (2000).
    [CrossRef] [PubMed]
  34. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett.23(5), 382–384 (1998).
    [CrossRef] [PubMed]
  35. S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
    [CrossRef] [PubMed]
  36. S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency Up-Conversion of Electromagnetic Radiation with Use of an Overdense Plasma,” Phys. Rev. Lett.61(3), 337–340 (1988).
    [CrossRef] [PubMed]
  37. W. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett.67(25), 3523–3526 (1991).
    [CrossRef] [PubMed]
  38. E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A10(5), 1888–1895 (1974).
    [CrossRef]
  39. P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett.110(4), 043902 (2013).
    [CrossRef]
  40. E. Treacy, “Optical pulse compression with diffraction gratings,” Quantum Electronics, IEEE Journal of5(9), 454–458 (1969).
    [CrossRef]
  41. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Optics and Photonics (Academic Press, 2001).
  42. P. Whalen, J. V. Moloney, and M. Kolesik, “Self-focusing collapse distance in ultrashort pulses and measurement of nonlinear index,” Opt. Lett.36(13), 2542–2544 (2011).
    [CrossRef] [PubMed]
  43. Z. Chang, “Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau,” Phys. Rev. A70(4), 043802 (2004).
    [CrossRef]
  44. M. D. Feit and J. J. A. Fleck, “Effect of refraction on spot-size dependence of laser-induced breakdown,” Appl. Phys. Lett.24(4), 169–172 (1974).
    [CrossRef]
  45. A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP23, 924–934 (1966).
  46. A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun.163(1-3), 29–32 (1999).
    [CrossRef]
  47. C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, “Plasma induced pulse breaking in filamentary self-compression,” Laser Phys.20(5), 1107–1113 (2010).
    [CrossRef]
  48. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett.22(5), 304–306 (1997).
    [CrossRef] [PubMed]
  49. J. Schwarz, P. Rambo, M. Kimmel, and B. Atherton, “Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor,” Opt. Express20(8), 8791–8803 (2012).
    [CrossRef] [PubMed]
  50. J. Odhner and R. J. Levis, “Direct phase and amplitude characterization of femtosecond laser pulses undergoing filamentation in air,” Opt. Lett.37(10), 1775–1777 (2012).
    [CrossRef] [PubMed]
  51. P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express18(20), 21504–21510 (2010).
    [CrossRef] [PubMed]

2013 (1)

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett.110(4), 043902 (2013).
[CrossRef]

2012 (2)

2011 (4)

P. Whalen, J. V. Moloney, and M. Kolesik, “Self-focusing collapse distance in ultrashort pulses and measurement of nonlinear index,” Opt. Lett.36(13), 2542–2544 (2011).
[CrossRef] [PubMed]

V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
[CrossRef]

C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the All-Optical Kerr Effect,” Phys. Rev. Lett.106(18), 183902 (2011).
[CrossRef] [PubMed]

P. Béjot and J. Kasparian, “Conical emission from laser filaments and higher-order Kerr effect in air,” Opt. Lett.36(24), 4812–4814 (2011).
[CrossRef] [PubMed]

2010 (5)

J. Kasparian, P. Béjot, and J.-P. Wolf, “Arbitrary-order nonlinear contribution to self-steepening,” Opt. Lett.35(16), 2795–2797 (2010).
[CrossRef] [PubMed]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010).
[CrossRef] [PubMed]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components: erratum,” Opt. Express18(3), 3011–3012 (2010).
[CrossRef]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express18(20), 21504–21510 (2010).
[CrossRef] [PubMed]

C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, “Plasma induced pulse breaking in filamentary self-compression,” Laser Phys.20(5), 1107–1113 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

2006 (1)

A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear X-wave formation by femtosecond filamentation in Kerr media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 016608 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (3)

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett.29(24), 2837–2839 (2004).
[CrossRef] [PubMed]

Z. Chang, “Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau,” Phys. Rev. A70(4), 043802 (2004).
[CrossRef]

2002 (1)

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun.202(1-3), 189–197 (2002).
[CrossRef]

2001 (1)

A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B73(3), 287–290 (2001).
[CrossRef]

2000 (2)

J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B71(6), 877–879 (2000).
[CrossRef]

A. L. Gaeta, “Catastrophic Collapse of Ultrashort Pulses,” Phys. Rev. Lett.84(16), 3582–3585 (2000).
[CrossRef] [PubMed]

1999 (4)

G. Fibich and G. Papanicolaou, “Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension,” SIAM J. Appl. Math.60(1), 183–240 (1999).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” Quantum Electronics, IEEE Journal of35(12), 1771–1776 (1999).
[CrossRef]

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. Marques, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett.82(3), 552–555 (1999).
[CrossRef]

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun.163(1-3), 29–32 (1999).
[CrossRef]

1998 (2)

1997 (1)

1996 (2)

1994 (3)

S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun.104(4-6), 330–335 (1994).
[CrossRef]

M. Ciarrocca, J. P. Marangos, D. D. Burgess, M. H. R. Hutchinson, R. A. Smith, S. C. Rae, and K. Burnett, “Spectral and spatial modifications to an intense 1 μm laser pulse interacting with a dense argon gas,” Opt. Commun.110(3-4), 425–434 (1994).
[CrossRef]

G. G. Luther, A. C. Newell, and J. V. Moloney, “The effects of normal dispersion on collapse events,” Physica D74(1-2), 59–73 (1994).
[CrossRef]

1993 (1)

S. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun.97(1-2), 25–28 (1993).
[CrossRef]

1992 (3)

P. Monot, T. Auguste, L. Lompré, G. Mainfray, and C. Manus, “Focusing limits of a terawatt laser in an underdense plasma,” JOSA B9(9), 1579–1584 (1992).
[CrossRef]

J. E. Rothenberg, “Pulse splitting during self-focusing in normally dispersive media,” Opt. Lett.17(8), 583–585 (1992).
[CrossRef] [PubMed]

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A46(2), 1084–1090 (1992).
[CrossRef] [PubMed]

1991 (2)

R. Rankin, C. E. Capjack, N. H. Burnett, and P. B. Corkum, “Refraction effects associated with multiphoton ionization and ultrashort-pulse laser propagation in plasma waveguides,” Opt. Lett.16(11), 835–837 (1991).
[CrossRef] [PubMed]

W. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett.67(25), 3523–3526 (1991).
[CrossRef] [PubMed]

1989 (1)

S. Vlasov, L. Piskunova, and V. Talanov, “Three-dimensional wave collapse in the nonlinear Schrödinger equation model,” Zh. Eksp. Teor. Fiz95, 1945 (1989).

1988 (1)

S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency Up-Conversion of Electromagnetic Radiation with Use of an Overdense Plasma,” Phys. Rev. Lett.61(3), 337–340 (1988).
[CrossRef] [PubMed]

1974 (2)

E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A10(5), 1888–1895 (1974).
[CrossRef]

M. D. Feit and J. J. A. Fleck, “Effect of refraction on spot-size dependence of laser-induced breakdown,” Appl. Phys. Lett.24(4), 169–172 (1974).
[CrossRef]

1969 (1)

E. Treacy, “Optical pulse compression with diffraction gratings,” Quantum Electronics, IEEE Journal of5(9), 454–458 (1969).
[CrossRef]

1966 (1)

A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP23, 924–934 (1966).

1965 (1)

P. L. Kelley, “Self-Focusing of Optical Beams,” Phys. Rev. Lett.15(26), 1005–1008 (1965).
[CrossRef]

Aközbek, N.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun.202(1-3), 189–197 (2002).
[CrossRef]

A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B73(3), 287–290 (2001).
[CrossRef]

Amiranoff, F.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. Marques, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett.82(3), 552–555 (1999).
[CrossRef]

Arnold, C. L.

Atherton, B.

Auguste, T.

P. Monot, T. Auguste, L. Lompré, G. Mainfray, and C. Manus, “Focusing limits of a terawatt laser in an underdense plasma,” JOSA B9(9), 1579–1584 (1992).
[CrossRef]

Bagchi, S.

Bahk, S.-W.

Becker, A.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun.202(1-3), 189–197 (2002).
[CrossRef]

A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B73(3), 287–290 (2001).
[CrossRef]

Béjot, P.

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett.110(4), 043902 (2013).
[CrossRef]

P. Béjot and J. Kasparian, “Conical emission from laser filaments and higher-order Kerr effect in air,” Opt. Lett.36(24), 4812–4814 (2011).
[CrossRef] [PubMed]

V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010).
[CrossRef] [PubMed]

J. Kasparian, P. Béjot, and J.-P. Wolf, “Arbitrary-order nonlinear contribution to self-steepening,” Opt. Lett.35(16), 2795–2797 (2010).
[CrossRef] [PubMed]

Bergé, L.

C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, “Plasma induced pulse breaking in filamentary self-compression,” Laser Phys.20(5), 1107–1113 (2010).
[CrossRef]

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

Blanc, S. P. L.

Bourayou, R.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

Bowden, C.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun.202(1-3), 189–197 (2002).
[CrossRef]

A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B73(3), 287–290 (2001).
[CrossRef]

Brée, C.

C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the All-Optical Kerr Effect,” Phys. Rev. Lett.106(18), 183902 (2011).
[CrossRef] [PubMed]

C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, “Plasma induced pulse breaking in filamentary self-compression,” Laser Phys.20(5), 1107–1113 (2010).
[CrossRef]

Brodeur, A.

Burgess, D. D.

M. Ciarrocca, J. P. Marangos, D. D. Burgess, M. H. R. Hutchinson, R. A. Smith, S. C. Rae, and K. Burnett, “Spectral and spatial modifications to an intense 1 μm laser pulse interacting with a dense argon gas,” Opt. Commun.110(3-4), 425–434 (1994).
[CrossRef]

Burnett, K.

M. Ciarrocca, J. P. Marangos, D. D. Burgess, M. H. R. Hutchinson, R. A. Smith, S. C. Rae, and K. Burnett, “Spectral and spatial modifications to an intense 1 μm laser pulse interacting with a dense argon gas,” Opt. Commun.110(3-4), 425–434 (1994).
[CrossRef]

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A46(2), 1084–1090 (1992).
[CrossRef] [PubMed]

Burnett, N. H.

Capjack, C. E.

Chang, Z.

Z. Chang, “Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau,” Phys. Rev. A70(4), 043802 (2004).
[CrossRef]

Chessa, P.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. Marques, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett.82(3), 552–555 (1999).
[CrossRef]

Chien, C. Y.

Chin, S.

W. Liu and S. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express13(15), 5750–5755 (2005).
[CrossRef] [PubMed]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun.202(1-3), 189–197 (2002).
[CrossRef]

A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B73(3), 287–290 (2001).
[CrossRef]

J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B71(6), 877–879 (2000).
[CrossRef]

Chin, S. L.

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun.163(1-3), 29–32 (1999).
[CrossRef]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett.22(5), 304–306 (1997).
[CrossRef] [PubMed]

Chvykov, V.

Ciarrocca, M.

M. Ciarrocca, J. P. Marangos, D. D. Burgess, M. H. R. Hutchinson, R. A. Smith, S. C. Rae, and K. Burnett, “Spectral and spatial modifications to an intense 1 μm laser pulse interacting with a dense argon gas,” Opt. Commun.110(3-4), 425–434 (1994).
[CrossRef]

Corkum, P. B.

Cormier, E.

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett.110(4), 043902 (2013).
[CrossRef]

Couairon, A.

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express18(20), 21504–21510 (2010).
[CrossRef] [PubMed]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear X-wave formation by femtosecond filamentation in Kerr media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 016608 (2006).
[CrossRef] [PubMed]

Dawson, J. M.

S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency Up-Conversion of Electromagnetic Radiation with Use of an Overdense Plasma,” Phys. Rev. Lett.61(3), 337–340 (1988).
[CrossRef] [PubMed]

De Wispelaere, E.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. Marques, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett.82(3), 552–555 (1999).
[CrossRef]

Demircan, A.

C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the All-Optical Kerr Effect,” Phys. Rev. Lett.106(18), 183902 (2011).
[CrossRef] [PubMed]

C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, “Plasma induced pulse breaking in filamentary self-compression,” Laser Phys.20(5), 1107–1113 (2010).
[CrossRef]

Di Trapani, P.

A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear X-wave formation by femtosecond filamentation in Kerr media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 016608 (2006).
[CrossRef] [PubMed]

Dorchies, F.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. Marques, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett.82(3), 552–555 (1999).
[CrossRef]

Downer, M. C.

W. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett.67(25), 3523–3526 (1991).
[CrossRef] [PubMed]

Dubietis, A.

A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear X-wave formation by femtosecond filamentation in Kerr media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 016608 (2006).
[CrossRef] [PubMed]

Ettoumi, W.

V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
[CrossRef]

Faccio, D.

A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear X-wave formation by femtosecond filamentation in Kerr media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 016608 (2006).
[CrossRef] [PubMed]

Faucher, O.

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett.110(4), 043902 (2013).
[CrossRef]

V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010).
[CrossRef] [PubMed]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components: erratum,” Opt. Express18(3), 3011–3012 (2010).
[CrossRef]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express17(16), 13429–13434 (2009).
[CrossRef] [PubMed]

Feit, M. D.

M. D. Feit and J. J. A. Fleck, “Effect of refraction on spot-size dependence of laser-induced breakdown,” Appl. Phys. Lett.24(4), 169–172 (1974).
[CrossRef]

Fibich, G.

G. Fibich and G. Papanicolaou, “Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension,” SIAM J. Appl. Math.60(1), 183–240 (1999).
[CrossRef]

Fleck, J. J. A.

M. D. Feit and J. J. A. Fleck, “Effect of refraction on spot-size dependence of laser-induced breakdown,” Appl. Phys. Lett.24(4), 169–172 (1974).
[CrossRef]

Gaeta, A. L.

Gaižauskas, E.

A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear X-wave formation by femtosecond filamentation in Kerr media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 016608 (2006).
[CrossRef] [PubMed]

Hamoniaux, G.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. Marques, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett.82(3), 552–555 (1999).
[CrossRef]

Henin, S.

V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010).
[CrossRef] [PubMed]

Hertz, E.

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett.110(4), 043902 (2013).
[CrossRef]

V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010).
[CrossRef] [PubMed]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components: erratum,” Opt. Express18(3), 3011–3012 (2010).
[CrossRef]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express17(16), 13429–13434 (2009).
[CrossRef] [PubMed]

Hutchinson, M. H. R.

M. Ciarrocca, J. P. Marangos, D. D. Burgess, M. H. R. Hutchinson, R. A. Smith, S. C. Rae, and K. Burnett, “Spectral and spatial modifications to an intense 1 μm laser pulse interacting with a dense argon gas,” Opt. Commun.110(3-4), 425–434 (1994).
[CrossRef]

Ilkov, F. A.

Kalintchenko, G.

Kandidov, V. P.

Kasparian, J.

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett.110(4), 043902 (2013).
[CrossRef]

P. Béjot and J. Kasparian, “Conical emission from laser filaments and higher-order Kerr effect in air,” Opt. Lett.36(24), 4812–4814 (2011).
[CrossRef] [PubMed]

V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
[CrossRef]

J. Kasparian, P. Béjot, and J.-P. Wolf, “Arbitrary-order nonlinear contribution to self-steepening,” Opt. Lett.35(16), 2795–2797 (2010).
[CrossRef] [PubMed]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010).
[CrossRef] [PubMed]

J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express16(1), 466–493 (2008).
[CrossRef] [PubMed]

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B71(6), 877–879 (2000).
[CrossRef]

Kelley, P. L.

P. L. Kelley, “Self-Focusing of Optical Beams,” Phys. Rev. Lett.15(26), 1005–1008 (1965).
[CrossRef]

Kim, A.

M. Lontano, G. Lampis, A. Kim, and A. Sergeev, “Intense laser pulse dynamics in dense gases,” Phys. Scr.T63, 141–147 (1996).
[CrossRef]

Kimmel, M.

Kiran, P. P.

Kolesik, M.

Kosareva, O. G.

Krishnan, S. R.

Kumar, G. R.

Lampis, G.

M. Lontano, G. Lampis, A. Kim, and A. Sergeev, “Intense laser pulse dynamics in dense gases,” Phys. Scr.T63, 141–147 (1996).
[CrossRef]

Lavorel, B.

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett.110(4), 043902 (2013).
[CrossRef]

V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010).
[CrossRef] [PubMed]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components: erratum,” Opt. Express18(3), 3011–3012 (2010).
[CrossRef]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express17(16), 13429–13434 (2009).
[CrossRef] [PubMed]

Lederer, F.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

Levis, R. J.

Liu, W.

W. Liu and S. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express13(15), 5750–5755 (2005).
[CrossRef] [PubMed]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun.202(1-3), 189–197 (2002).
[CrossRef]

Lompré, L.

P. Monot, T. Auguste, L. Lompré, G. Mainfray, and C. Manus, “Focusing limits of a terawatt laser in an underdense plasma,” JOSA B9(9), 1579–1584 (1992).
[CrossRef]

Lontano, M.

M. Lontano, G. Lampis, A. Kim, and A. Sergeev, “Intense laser pulse dynamics in dense gases,” Phys. Scr.T63, 141–147 (1996).
[CrossRef]

Loriot, V.

V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
[CrossRef]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components: erratum,” Opt. Express18(3), 3011–3012 (2010).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010).
[CrossRef] [PubMed]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express17(16), 13429–13434 (2009).
[CrossRef] [PubMed]

Luther, G. G.

G. G. Luther, A. C. Newell, and J. V. Moloney, “The effects of normal dispersion on collapse events,” Physica D74(1-2), 59–73 (1994).
[CrossRef]

Mainfray, G.

P. Monot, T. Auguste, L. Lompré, G. Mainfray, and C. Manus, “Focusing limits of a terawatt laser in an underdense plasma,” JOSA B9(9), 1579–1584 (1992).
[CrossRef]

Maksimchuk, A.

Malka, V.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. Marques, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett.82(3), 552–555 (1999).
[CrossRef]

Manus, C.

P. Monot, T. Auguste, L. Lompré, G. Mainfray, and C. Manus, “Focusing limits of a terawatt laser in an underdense plasma,” JOSA B9(9), 1579–1584 (1992).
[CrossRef]

Marangos, J. P.

M. Ciarrocca, J. P. Marangos, D. D. Burgess, M. H. R. Hutchinson, R. A. Smith, S. C. Rae, and K. Burnett, “Spectral and spatial modifications to an intense 1 μm laser pulse interacting with a dense argon gas,” Opt. Commun.110(3-4), 425–434 (1994).
[CrossRef]

Marques, J.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. Marques, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett.82(3), 552–555 (1999).
[CrossRef]

Méjean, G.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

Mlejnek, M.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” Quantum Electronics, IEEE Journal of35(12), 1771–1776 (1999).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett.23(5), 382–384 (1998).
[CrossRef] [PubMed]

Moloney, J. V.

P. Whalen, J. V. Moloney, and M. Kolesik, “Self-focusing collapse distance in ultrashort pulses and measurement of nonlinear index,” Opt. Lett.36(13), 2542–2544 (2011).
[CrossRef] [PubMed]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” Quantum Electronics, IEEE Journal of35(12), 1771–1776 (1999).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett.23(5), 382–384 (1998).
[CrossRef] [PubMed]

G. G. Luther, A. C. Newell, and J. V. Moloney, “The effects of normal dispersion on collapse events,” Physica D74(1-2), 59–73 (1994).
[CrossRef]

Monot, P.

P. Monot, T. Auguste, L. Lompré, G. Mainfray, and C. Manus, “Focusing limits of a terawatt laser in an underdense plasma,” JOSA B9(9), 1579–1584 (1992).
[CrossRef]

Mora, P.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. Marques, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett.82(3), 552–555 (1999).
[CrossRef]

Mori, W. B.

S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency Up-Conversion of Electromagnetic Radiation with Use of an Overdense Plasma,” Phys. Rev. Lett.61(3), 337–340 (1988).
[CrossRef] [PubMed]

Mourou, G. A.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

Newell, A. C.

G. G. Luther, A. C. Newell, and J. V. Moloney, “The effects of normal dispersion on collapse events,” Physica D74(1-2), 59–73 (1994).
[CrossRef]

Odhner, J.

Oral, E.

A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B73(3), 287–290 (2001).
[CrossRef]

Papanicolaou, G.

G. Fibich and G. Papanicolaou, “Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension,” SIAM J. Appl. Math.60(1), 183–240 (1999).
[CrossRef]

Perelomov, A.

A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP23, 924–934 (1966).

Peschel, U.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

Petit, S.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun.202(1-3), 189–197 (2002).
[CrossRef]

Petit, Y.

V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
[CrossRef]

Piskunova, L.

S. Vlasov, L. Piskunova, and V. Talanov, “Three-dimensional wave collapse in the nonlinear Schrödinger equation model,” Zh. Eksp. Teor. Fiz95, 1945 (1989).

Planchon, T. A.

Popov, V.

A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP23, 924–934 (1966).

Rae, S.

S. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun.97(1-2), 25–28 (1993).
[CrossRef]

Rae, S. C.

S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun.104(4-6), 330–335 (1994).
[CrossRef]

M. Ciarrocca, J. P. Marangos, D. D. Burgess, M. H. R. Hutchinson, R. A. Smith, S. C. Rae, and K. Burnett, “Spectral and spatial modifications to an intense 1 μm laser pulse interacting with a dense argon gas,” Opt. Commun.110(3-4), 425–434 (1994).
[CrossRef]

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A46(2), 1084–1090 (1992).
[CrossRef] [PubMed]

Rambo, P.

Ranka, J. K.

Rankin, R.

Rodriguez, M.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

Rothenberg, J. E.

Rousseau, P.

Salmon, E.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

Sauerbrey, R.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B71(6), 877–879 (2000).
[CrossRef]

S. P. L. Blanc and R. Sauerbrey, “Spectral, temporal, and spatial characteristics of plasma-induced spectral blue shifting and its application to femtosecond pulse measurement,” J. Opt. Soc. Am. B13(1), 72–88 (1996).
[CrossRef]

Schwarz, J.

Sergeev, A.

M. Lontano, G. Lampis, A. Kim, and A. Sergeev, “Intense laser pulse dynamics in dense gases,” Phys. Scr.T63, 141–147 (1996).
[CrossRef]

Siders, C. W.

W. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett.67(25), 3523–3526 (1991).
[CrossRef] [PubMed]

Skupin, S.

C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, “Plasma induced pulse breaking in filamentary self-compression,” Laser Phys.20(5), 1107–1113 (2010).
[CrossRef]

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

Smith, R. A.

M. Ciarrocca, J. P. Marangos, D. D. Burgess, M. H. R. Hutchinson, R. A. Smith, S. C. Rae, and K. Burnett, “Spectral and spatial modifications to an intense 1 μm laser pulse interacting with a dense argon gas,” Opt. Commun.110(3-4), 425–434 (1994).
[CrossRef]

Steinmeyer, G.

C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the All-Optical Kerr Effect,” Phys. Rev. Lett.106(18), 183902 (2011).
[CrossRef] [PubMed]

C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, “Plasma induced pulse breaking in filamentary self-compression,” Laser Phys.20(5), 1107–1113 (2010).
[CrossRef]

Talanov, V.

S. Vlasov, L. Piskunova, and V. Talanov, “Three-dimensional wave collapse in the nonlinear Schrödinger equation model,” Zh. Eksp. Teor. Fiz95, 1945 (1989).

Talebpour, A.

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun.163(1-3), 29–32 (1999).
[CrossRef]

Terent’ev, M.

A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP23, 924–934 (1966).

Treacy, E.

E. Treacy, “Optical pulse compression with diffraction gratings,” Quantum Electronics, IEEE Journal of5(9), 454–458 (1969).
[CrossRef]

Vieillard, T.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010).
[CrossRef] [PubMed]

Vijayalakshmi, K.

A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B73(3), 287–290 (2001).
[CrossRef]

Vlasov, S.

S. Vlasov, L. Piskunova, and V. Talanov, “Three-dimensional wave collapse in the nonlinear Schrödinger equation model,” Zh. Eksp. Teor. Fiz95, 1945 (1989).

Whalen, P.

Wilks, S. C.

S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency Up-Conversion of Electromagnetic Radiation with Use of an Overdense Plasma,” Phys. Rev. Lett.61(3), 337–340 (1988).
[CrossRef] [PubMed]

Wolf, J. P.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

Wolf, J.-P.

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett.110(4), 043902 (2013).
[CrossRef]

V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010).
[CrossRef] [PubMed]

J. Kasparian, P. Béjot, and J.-P. Wolf, “Arbitrary-order nonlinear contribution to self-steepening,” Opt. Lett.35(16), 2795–2797 (2010).
[CrossRef] [PubMed]

J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express16(1), 466–493 (2008).
[CrossRef] [PubMed]

Wood, W. M.

W. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett.67(25), 3523–3526 (1991).
[CrossRef] [PubMed]

Wöste, L.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

Wright, E. M.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” Quantum Electronics, IEEE Journal of35(12), 1771–1776 (1999).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett.23(5), 382–384 (1998).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A10(5), 1888–1895 (1974).
[CrossRef]

Yang, J.

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun.163(1-3), 29–32 (1999).
[CrossRef]

Yanovsky, V.

Yu, J.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

Appl. Phys. B (2)

J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B71(6), 877–879 (2000).
[CrossRef]

A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B73(3), 287–290 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

M. D. Feit and J. J. A. Fleck, “Effect of refraction on spot-size dependence of laser-induced breakdown,” Appl. Phys. Lett.24(4), 169–172 (1974).
[CrossRef]

J. Opt. Soc. Am. B (1)

JOSA B (1)

P. Monot, T. Auguste, L. Lompré, G. Mainfray, and C. Manus, “Focusing limits of a terawatt laser in an underdense plasma,” JOSA B9(9), 1579–1584 (1992).
[CrossRef]

Laser Phys. (2)

V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011).
[CrossRef]

C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, “Plasma induced pulse breaking in filamentary self-compression,” Laser Phys.20(5), 1107–1113 (2010).
[CrossRef]

Opt. Commun. (5)

A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun.163(1-3), 29–32 (1999).
[CrossRef]

S. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun.97(1-2), 25–28 (1993).
[CrossRef]

S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun.104(4-6), 330–335 (1994).
[CrossRef]

M. Ciarrocca, J. P. Marangos, D. D. Burgess, M. H. R. Hutchinson, R. A. Smith, S. C. Rae, and K. Burnett, “Spectral and spatial modifications to an intense 1 μm laser pulse interacting with a dense argon gas,” Opt. Commun.110(3-4), 425–434 (1994).
[CrossRef]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun.202(1-3), 189–197 (2002).
[CrossRef]

Opt. Express (6)

Opt. Lett. (10)

J. Odhner and R. J. Levis, “Direct phase and amplitude characterization of femtosecond laser pulses undergoing filamentation in air,” Opt. Lett.37(10), 1775–1777 (2012).
[CrossRef] [PubMed]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett.22(5), 304–306 (1997).
[CrossRef] [PubMed]

P. Whalen, J. V. Moloney, and M. Kolesik, “Self-focusing collapse distance in ultrashort pulses and measurement of nonlinear index,” Opt. Lett.36(13), 2542–2544 (2011).
[CrossRef] [PubMed]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett.23(5), 382–384 (1998).
[CrossRef] [PubMed]

P. Béjot and J. Kasparian, “Conical emission from laser filaments and higher-order Kerr effect in air,” Opt. Lett.36(24), 4812–4814 (2011).
[CrossRef] [PubMed]

J. Kasparian, P. Béjot, and J.-P. Wolf, “Arbitrary-order nonlinear contribution to self-steepening,” Opt. Lett.35(16), 2795–2797 (2010).
[CrossRef] [PubMed]

J. K. Ranka and A. L. Gaeta, “Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses,” Opt. Lett.23(7), 534–536 (1998).
[CrossRef] [PubMed]

J. E. Rothenberg, “Pulse splitting during self-focusing in normally dispersive media,” Opt. Lett.17(8), 583–585 (1992).
[CrossRef] [PubMed]

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett.29(24), 2837–2839 (2004).
[CrossRef] [PubMed]

R. Rankin, C. E. Capjack, N. H. Burnett, and P. B. Corkum, “Refraction effects associated with multiphoton ionization and ultrashort-pulse laser propagation in plasma waveguides,” Opt. Lett.16(11), 835–837 (1991).
[CrossRef] [PubMed]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

Phys. Rev. A (3)

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A46(2), 1084–1090 (1992).
[CrossRef] [PubMed]

E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A10(5), 1888–1895 (1974).
[CrossRef]

Z. Chang, “Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau,” Phys. Rev. A70(4), 043802 (2004).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004).
[CrossRef] [PubMed]

A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear X-wave formation by femtosecond filamentation in Kerr media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 016608 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (8)

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. Marques, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett.82(3), 552–555 (1999).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010).
[CrossRef] [PubMed]

C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the All-Optical Kerr Effect,” Phys. Rev. Lett.106(18), 183902 (2011).
[CrossRef] [PubMed]

P. L. Kelley, “Self-Focusing of Optical Beams,” Phys. Rev. Lett.15(26), 1005–1008 (1965).
[CrossRef]

A. L. Gaeta, “Catastrophic Collapse of Ultrashort Pulses,” Phys. Rev. Lett.84(16), 3582–3585 (2000).
[CrossRef] [PubMed]

S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency Up-Conversion of Electromagnetic Radiation with Use of an Overdense Plasma,” Phys. Rev. Lett.61(3), 337–340 (1988).
[CrossRef] [PubMed]

W. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett.67(25), 3523–3526 (1991).
[CrossRef] [PubMed]

P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett.110(4), 043902 (2013).
[CrossRef]

Phys. Scr. (1)

M. Lontano, G. Lampis, A. Kim, and A. Sergeev, “Intense laser pulse dynamics in dense gases,” Phys. Scr.T63, 141–147 (1996).
[CrossRef]

Physica D (1)

G. G. Luther, A. C. Newell, and J. V. Moloney, “The effects of normal dispersion on collapse events,” Physica D74(1-2), 59–73 (1994).
[CrossRef]

Quantum Electronics, IEEE Journal of (2)

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” Quantum Electronics, IEEE Journal of35(12), 1771–1776 (1999).
[CrossRef]

E. Treacy, “Optical pulse compression with diffraction gratings,” Quantum Electronics, IEEE Journal of5(9), 454–458 (1969).
[CrossRef]

SIAM J. Appl. Math. (1)

G. Fibich and G. Papanicolaou, “Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension,” SIAM J. Appl. Math.60(1), 183–240 (1999).
[CrossRef]

Sov. Phys. JETP (1)

A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP23, 924–934 (1966).

Zh. Eksp. Teor. Fiz (1)

S. Vlasov, L. Piskunova, and V. Talanov, “Three-dimensional wave collapse in the nonlinear Schrödinger equation model,” Zh. Eksp. Teor. Fiz95, 1945 (1989).

Other (2)

R. W. Boyd, Nonlinear Optics, 2 ed. (Academic Press, New York, 2003).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Optics and Photonics (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Plots of refractive index of air as a function of intensity, according to the models of Mlejnek [34], Skupin [35], and Loriot [27]. Δn = 0 is the intensity where the pulse stops focusing and starts defocusing. For the Mlejnek and Skupin models, a Gaussian pulse of width 70 fs was used, and the intensities are for the pulse peak.

Fig. 2
Fig. 2

Spectrum of the pulse after passing through a tight geometrical focus in air. The input spectrum is shown below the white line. The second-order dispersion (chirp, β2) is adjusted by changing the compressor length.

Fig. 3
Fig. 3

The left panel shows the spectral centroid as a function of pulse energy, while the right panel shows the position of the left edge (lens side) of the luminous plasma ball.

Fig. 4
Fig. 4

Setup for the twisted pulse experiment. Light entering the experiment is linearly polarized at 45° (a). A series of 1-5 quartz waveplates, each with a phase thickness of five waves, is inserted into the beam with the fast axes vertical. Each plate introduces a group delay between the s and p components of Δt = 14 fs. After the waveplates, the pulse is “twisted” with an s-polarized leading edge and a p-polarized trailing edge (b). The pulse is focused by a lens to produce the plasma, then recollimated by an identical lens. The pulse now has a strongly blueshifted leading edge due to plasma blueshifting, but the trailing edge shows little spectral change (c). A small portion of the pulse energy is reflected off the front surface of a near-normal neutral density filter; the very small angle of incidence insures the polarization is not affected (d). A polarizer then selects either the s (leading) or p (trailing) component; here we are selecting s (e). The remaining radiation scatters off a vibrating screen, and is picked up by a spectrometer.

Fig. 5
Fig. 5

Spectral intensity fraction R(λ) = Is(λ)/(Ip(λ) + Is(λ)) as a function of number of waveplates in the input beam: more waveplates correspond to a longer delay between the s and p portions of the pulse.

Fig. 6
Fig. 6

Total number of ions created as a function of time for a 70 fs, 1 mJ pulse.

Fig. 7
Fig. 7

Maximum intensities as a function of axial position for four different pulse propagation models. “Vacuum” sets the Kerr index and ionization to zero. “PPT and Kerr” uses the full PPT model as well as Kerr self-focusing; “PPT w/o Kerr” sets n2 = 0. “MPI” uses lowest order perturbation theory as well as self-focusing.

Metrics