Abstract

Using a perturbative approach, we perform a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguide. The impact of slow-light propagation on the carrier-depletion-induced nonlinear gain saturation of the device is investigated. An effective rate-equation-based model is presented. It is shown that it well accounts for the three-dimensional simulation results. Simulations indicate that a slow-light-enhanced photonic crystal traveling-wave amplifier has a high small-signal modal gain and low saturation power.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008).
    [CrossRef]
  2. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75, 1896–1899 (1994).
    [CrossRef]
  3. J. Mørk and T. R. Nielsen, “On the use of slow light for enhancing waveguide properties,” Opt. Lett.35, 2834–2836 (2010).
    [CrossRef] [PubMed]
  4. E. Mizuta, H. Watanabe, and T. Baba, “All semiconductor low-Δ photonic crystal waveguide for semiconductor optical amplifier,” Jpn. J. Appl. Phys.45, 6116–6120 (2006).
    [CrossRef]
  5. R. Kappeler, P. Kasper, H. Jäckel, and C. Hafner, “Record-low propagation losses of 154dB/cm for substrate-type W1 photonic crystal waveguides by means of hole shape engineering,” Appl. Phys. Lett.101, 131108 (2012).
    [CrossRef]
  6. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics4, 648–654 (2010).
    [CrossRef]
  7. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5, 297–300 (2011).
    [CrossRef]
  8. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
    [CrossRef]
  9. P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B73, 165125 (2006).
    [CrossRef]
  10. Y. Liu, “Slow-light enhancement of stimulated emission of atomic systems in photonic crystals,” J. Opt. Soc. Am. B27442–446 (2010).
    [CrossRef]
  11. A. Mock, “First principles derivation of microcavity semiconductor laser threshold condition and its application to FDTD active cavity modeling,” J. Opt. Soc. Am. B27, 2262–2272 (2010).
    [CrossRef]
  12. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley, 1995).
  13. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
    [CrossRef]
  14. P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun.164, 51–55 (1999).
    [CrossRef]
  15. J. Mørk, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron.5, 851–860 (1999).
    [CrossRef]
  16. B. Tromborg, H. E. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: Modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron.30, 939–956 (1994).
    [CrossRef]
  17. www.comsol.com .
  18. J. E. Sipe, N. A. R. Bhat, P. Chak, and S. Pereira, “Effective field theory for the nonlinear optical properties of photonic crystal,” Phys. Rev. E69,016604 (2004).
    [CrossRef]
  19. N. C. Panoiu, J. F. MicMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron.16, 257–266 (2010).
    [CrossRef]
  20. A. Mecozzi and J. Mørk, “Theory of heterodyne pump-probe experiments with femtosecond pulses,” J. Opt. Soc. Am. B13, 2437–2452 (1996).
    [CrossRef]
  21. S. G. Johnson and J. D. Joannopoulos, “Bloch-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8, 173–190 (2001).
    [CrossRef] [PubMed]
  22. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  23. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev.5, 308–321 (2011).
    [CrossRef]
  24. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
    [CrossRef]
  25. K. Schmidt and R. Kappeler, “Efficient computation of photonic crystal waveguide modes with dispersive material,” Opt. Express18, 7307–7322 (2010).
    [CrossRef] [PubMed]
  26. C. Fietz, Y. Urzhumov, and G. Shvets, “Complex k band diagrams of 3D metamaterial/photonic crystals,” Opt. Express19, 19027–19041 (2011).
    [CrossRef] [PubMed]
  27. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26, 1396–1403 (2008).
    [CrossRef]
  28. J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
    [CrossRef]
  29. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008).
    [CrossRef]
  30. T. Liu, K. Obermann, K. Petermann, F. Girardin, and G. Guekos, “Effect of saturation caused by amplified spontaneous emission on semiconductor optical amplifier performance,” Electron. Lett.33, 2042–2043 (1997).
    [CrossRef]
  31. L. O’ Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18, 27627–27638 (2010).
    [CrossRef]
  32. J. Grgic, J. R. Ott, F. Wang, O. Sigmund, A. P. Jauho, J. Mørk, and N. A. Mortensen, “Fundamental limitations to gain enhancement in periodic media and waveguides,” Phys. Rev. Lett.108, 183903 (2012).
    [CrossRef] [PubMed]
  33. F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
    [CrossRef]
  34. J. Mørk, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol.25, 083002 (2010).
    [CrossRef]
  35. M. L. Nielsen and J. Mørk, “Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering,” J. Opt. Soc. Am. B21, 1606–1619, (2004).
    [CrossRef]

2013 (1)

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
[CrossRef]

2012 (3)

R. Kappeler, P. Kasper, H. Jäckel, and C. Hafner, “Record-low propagation losses of 154dB/cm for substrate-type W1 photonic crystal waveguides by means of hole shape engineering,” Appl. Phys. Lett.101, 131108 (2012).
[CrossRef]

J. Grgic, J. R. Ott, F. Wang, O. Sigmund, A. P. Jauho, J. Mørk, and N. A. Mortensen, “Fundamental limitations to gain enhancement in periodic media and waveguides,” Phys. Rev. Lett.108, 183903 (2012).
[CrossRef] [PubMed]

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
[CrossRef]

2011 (4)

C. Fietz, Y. Urzhumov, and G. Shvets, “Complex k band diagrams of 3D metamaterial/photonic crystals,” Opt. Express19, 19027–19041 (2011).
[CrossRef] [PubMed]

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev.5, 308–321 (2011).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5, 297–300 (2011).
[CrossRef]

2010 (9)

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics4, 648–654 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

N. C. Panoiu, J. F. MicMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron.16, 257–266 (2010).
[CrossRef]

J. Mørk, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol.25, 083002 (2010).
[CrossRef]

Y. Liu, “Slow-light enhancement of stimulated emission of atomic systems in photonic crystals,” J. Opt. Soc. Am. B27442–446 (2010).
[CrossRef]

K. Schmidt and R. Kappeler, “Efficient computation of photonic crystal waveguide modes with dispersive material,” Opt. Express18, 7307–7322 (2010).
[CrossRef] [PubMed]

J. Mørk and T. R. Nielsen, “On the use of slow light for enhancing waveguide properties,” Opt. Lett.35, 2834–2836 (2010).
[CrossRef] [PubMed]

A. Mock, “First principles derivation of microcavity semiconductor laser threshold condition and its application to FDTD active cavity modeling,” J. Opt. Soc. Am. B27, 2262–2272 (2010).
[CrossRef]

L. O’ Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18, 27627–27638 (2010).
[CrossRef]

2008 (3)

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008).
[CrossRef]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26, 1396–1403 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008).
[CrossRef]

2006 (2)

E. Mizuta, H. Watanabe, and T. Baba, “All semiconductor low-Δ photonic crystal waveguide for semiconductor optical amplifier,” Jpn. J. Appl. Phys.45, 6116–6120 (2006).
[CrossRef]

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B73, 165125 (2006).
[CrossRef]

2004 (2)

J. E. Sipe, N. A. R. Bhat, P. Chak, and S. Pereira, “Effective field theory for the nonlinear optical properties of photonic crystal,” Phys. Rev. E69,016604 (2004).
[CrossRef]

M. L. Nielsen and J. Mørk, “Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering,” J. Opt. Soc. Am. B21, 1606–1619, (2004).
[CrossRef]

2001 (1)

1999 (2)

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun.164, 51–55 (1999).
[CrossRef]

J. Mørk, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron.5, 851–860 (1999).
[CrossRef]

1997 (1)

T. Liu, K. Obermann, K. Petermann, F. Girardin, and G. Guekos, “Effect of saturation caused by amplified spontaneous emission on semiconductor optical amplifier performance,” Electron. Lett.33, 2042–2043 (1997).
[CrossRef]

1996 (1)

1994 (2)

B. Tromborg, H. E. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: Modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron.30, 939–956 (1994).
[CrossRef]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75, 1896–1899 (1994).
[CrossRef]

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
[CrossRef]

Agashe, S. S.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
[CrossRef]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008).
[CrossRef]

E. Mizuta, H. Watanabe, and T. Baba, “All semiconductor low-Δ photonic crystal waveguide for semiconductor optical amplifier,” Jpn. J. Appl. Phys.45, 6116–6120 (2006).
[CrossRef]

Beggs, D. M.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B73, 165125 (2006).
[CrossRef]

Bhat, N. A. R.

J. E. Sipe, N. A. R. Bhat, P. Chak, and S. Pereira, “Effective field theory for the nonlinear optical properties of photonic crystal,” Phys. Rev. E69,016604 (2004).
[CrossRef]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75, 1896–1899 (1994).
[CrossRef]

Borri, P.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun.164, 51–55 (1999).
[CrossRef]

Bostak, J. S.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75, 1896–1899 (1994).
[CrossRef]

Butrie, T.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Chak, P.

J. E. Sipe, N. A. R. Bhat, P. Chak, and S. Pereira, “Effective field theory for the nonlinear optical properties of photonic crystal,” Phys. Rev. E69,016604 (2004).
[CrossRef]

Chen, Y.

J. Mørk, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol.25, 083002 (2010).
[CrossRef]

Christini, D.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley, 1995).

Corzine, S. W.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley, 1995).

DeMars, S.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Dentai, A.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Dominic, V.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75, 1896–1899 (1994).
[CrossRef]

Eisenstein, G.

J. Mørk, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron.5, 851–860 (1999).
[CrossRef]

Ellis, B.

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5, 297–300 (2011).
[CrossRef]

Evans, P.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Fietz, C.

Fink, Y.

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B73, 165125 (2006).
[CrossRef]

Fisher, M.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Forchel, A.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008).
[CrossRef]

Girardin, F.

T. Liu, K. Obermann, K. Petermann, F. Girardin, and G. Guekos, “Effect of saturation caused by amplified spontaneous emission on semiconductor optical amplifier performance,” Electron. Lett.33, 2042–2043 (1997).
[CrossRef]

Goldfarb, G.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Grgic, J.

J. Grgic, J. R. Ott, F. Wang, O. Sigmund, A. P. Jauho, J. Mørk, and N. A. Mortensen, “Fundamental limitations to gain enhancement in periodic media and waveguides,” Phys. Rev. Lett.108, 183903 (2012).
[CrossRef] [PubMed]

Grubb, S. G.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Guekos, G.

T. Liu, K. Obermann, K. Petermann, F. Girardin, and G. Guekos, “Effect of saturation caused by amplified spontaneous emission on semiconductor optical amplifier performance,” Electron. Lett.33, 2042–2043 (1997).
[CrossRef]

Hafner, C.

R. Kappeler, P. Kasper, H. Jäckel, and C. Hafner, “Record-low propagation losses of 154dB/cm for substrate-type W1 photonic crystal waveguides by means of hole shape engineering,” Appl. Phys. Lett.101, 131108 (2012).
[CrossRef]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5, 297–300 (2011).
[CrossRef]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5, 297–300 (2011).
[CrossRef]

Hasebe, K.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
[CrossRef]

Hugonin, J. P.

Hvam, J. M.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun.164, 51–55 (1999).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Jäckel, H.

R. Kappeler, P. Kasper, H. Jäckel, and C. Hafner, “Record-low propagation losses of 154dB/cm for substrate-type W1 photonic crystal waveguides by means of hole shape engineering,” Appl. Phys. Lett.101, 131108 (2012).
[CrossRef]

Jauho, A. P.

J. Grgic, J. R. Ott, F. Wang, O. Sigmund, A. P. Jauho, J. Mørk, and N. A. Mortensen, “Fundamental limitations to gain enhancement in periodic media and waveguides,” Phys. Rev. Lett.108, 183903 (2012).
[CrossRef] [PubMed]

Jensen, J. S.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev.5, 308–321 (2011).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B73, 165125 (2006).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Bloch-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8, 173–190 (2001).
[CrossRef] [PubMed]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Bloch-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8, 173–190 (2001).
[CrossRef] [PubMed]

Joyner, C.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Julsgaard, B.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008).
[CrossRef]

Kaer, P.

J. Mørk, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol.25, 083002 (2010).
[CrossRef]

Kakitsuka, T.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics4, 648–654 (2010).
[CrossRef]

Kamp, M.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008).
[CrossRef]

Kappeler, R.

R. Kappeler, P. Kasper, H. Jäckel, and C. Hafner, “Record-low propagation losses of 154dB/cm for substrate-type W1 photonic crystal waveguides by means of hole shape engineering,” Appl. Phys. Lett.101, 131108 (2012).
[CrossRef]

K. Schmidt and R. Kappeler, “Efficient computation of photonic crystal waveguide modes with dispersive material,” Opt. Express18, 7307–7322 (2010).
[CrossRef] [PubMed]

Kasper, P.

R. Kappeler, P. Kasper, H. Jäckel, and C. Hafner, “Record-low propagation losses of 154dB/cm for substrate-type W1 photonic crystal waveguides by means of hole shape engineering,” Appl. Phys. Lett.101, 131108 (2012).
[CrossRef]

Kato, M.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Kaufman, M.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Kawaguchi, Y.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics4, 648–654 (2010).
[CrossRef]

Kish, F. A.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Kobayashi, W.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
[CrossRef]

Krauss, T. F.

Kuipers, L.

Kuntz, M.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Lal, V.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Lalanne, P.

Lambert, D. J. H.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Langbein, W.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun.164, 51–55 (1999).
[CrossRef]

Lassen, H. E.

B. Tromborg, H. E. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: Modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron.30, 939–956 (1994).
[CrossRef]

Lidorikis, E.

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B73, 165125 (2006).
[CrossRef]

Liu, T.

T. Liu, K. Obermann, K. Petermann, F. Girardin, and G. Guekos, “Effect of saturation caused by amplified spontaneous emission on semiconductor optical amplifier performance,” Electron. Lett.33, 2042–2043 (1997).
[CrossRef]

Liu, Y.

Lodahl, P.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008).
[CrossRef]

Lund-Hansen, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008).
[CrossRef]

Lunnemann, P.

J. Mørk, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol.25, 083002 (2010).
[CrossRef]

Malendevich, R.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Martelli, F.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun.164, 51–55 (1999).
[CrossRef]

Matsuo, S.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics4, 648–654 (2010).
[CrossRef]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5, 297–300 (2011).
[CrossRef]

Mazoyer, S.

McNicol, J.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Mecozzi, A.

J. Mørk, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron.5, 851–860 (1999).
[CrossRef]

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun.164, 51–55 (1999).
[CrossRef]

A. Mecozzi and J. Mørk, “Theory of heterodyne pump-probe experiments with femtosecond pulses,” J. Opt. Soc. Am. B13, 2437–2452 (1996).
[CrossRef]

Melle, S.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Melloni, A.

MicMillan, J. F.

N. C. Panoiu, J. F. MicMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron.16, 257–266 (2010).
[CrossRef]

Missey, M.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Mitchell, M.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Mizuta, E.

E. Mizuta, H. Watanabe, and T. Baba, “All semiconductor low-Δ photonic crystal waveguide for semiconductor optical amplifier,” Jpn. J. Appl. Phys.45, 6116–6120 (2006).
[CrossRef]

Mock, A.

Morichetti, F.

Mørk, J.

J. Grgic, J. R. Ott, F. Wang, O. Sigmund, A. P. Jauho, J. Mørk, and N. A. Mortensen, “Fundamental limitations to gain enhancement in periodic media and waveguides,” Phys. Rev. Lett.108, 183903 (2012).
[CrossRef] [PubMed]

J. Mørk, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol.25, 083002 (2010).
[CrossRef]

J. Mørk and T. R. Nielsen, “On the use of slow light for enhancing waveguide properties,” Opt. Lett.35, 2834–2836 (2010).
[CrossRef] [PubMed]

M. L. Nielsen and J. Mørk, “Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering,” J. Opt. Soc. Am. B21, 1606–1619, (2004).
[CrossRef]

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun.164, 51–55 (1999).
[CrossRef]

J. Mørk, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron.5, 851–860 (1999).
[CrossRef]

A. Mecozzi and J. Mørk, “Theory of heterodyne pump-probe experiments with femtosecond pulses,” J. Opt. Soc. Am. B13, 2437–2452 (1996).
[CrossRef]

Mortensen, N. A.

J. Grgic, J. R. Ott, F. Wang, O. Sigmund, A. P. Jauho, J. Mørk, and N. A. Mortensen, “Fundamental limitations to gain enhancement in periodic media and waveguides,” Phys. Rev. Lett.108, 183903 (2012).
[CrossRef] [PubMed]

Murthy, S.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Muthiah, R. C.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Nagarajan, R.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Nielsen, M. L.

Nielsen, T. R.

J. Mørk and T. R. Nielsen, “On the use of slow light for enhancing waveguide properties,” Opt. Lett.35, 2834–2836 (2010).
[CrossRef] [PubMed]

J. Mørk, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol.25, 083002 (2010).
[CrossRef]

Nilsson, A.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Notomi, M.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics4, 648–654 (2010).
[CrossRef]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26, 1396–1403 (2008).
[CrossRef]

Nozaki, K.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics4, 648–654 (2010).
[CrossRef]

O’ Faolain, L.

Obermann, K.

T. Liu, K. Obermann, K. Petermann, F. Girardin, and G. Guekos, “Effect of saturation caused by amplified spontaneous emission on semiconductor optical amplifier performance,” Electron. Lett.33, 2042–2043 (1997).
[CrossRef]

Olesen, H.

B. Tromborg, H. E. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: Modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron.30, 939–956 (1994).
[CrossRef]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Ott, J. R.

J. Grgic, J. R. Ott, F. Wang, O. Sigmund, A. P. Jauho, J. Mørk, and N. A. Mortensen, “Fundamental limitations to gain enhancement in periodic media and waveguides,” Phys. Rev. Lett.108, 183903 (2012).
[CrossRef] [PubMed]

Panoiu, N. C.

N. C. Panoiu, J. F. MicMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron.16, 257–266 (2010).
[CrossRef]

Pavinski, D. J.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Pereira, S.

J. E. Sipe, N. A. R. Bhat, P. Chak, and S. Pereira, “Effective field theory for the nonlinear optical properties of photonic crystal,” Phys. Rev. E69,016604 (2004).
[CrossRef]

Petermann, K.

T. Liu, K. Obermann, K. Petermann, F. Girardin, and G. Guekos, “Effect of saturation caused by amplified spontaneous emission on semiconductor optical amplifier performance,” Electron. Lett.33, 2042–2043 (1997).
[CrossRef]

Petykiewicz, J.

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
[CrossRef]

Pleumeekers, J. L.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Raburn, M.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Rahn, J. T.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Reffle, M. S.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Salvatore, R. A.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Samra, P.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5, 297–300 (2011).
[CrossRef]

Sato, T.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics4, 648–654 (2010).
[CrossRef]

Scaffetti, S.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun.164, 51–55 (1999).
[CrossRef]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75, 1896–1899 (1994).
[CrossRef]

Schmidt, K.

Schneider, R. P.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Schulz, S. A.

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics4, 648–654 (2010).
[CrossRef]

Shambat, G.

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5, 297–300 (2011).
[CrossRef]

Shinya, A.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics4, 648–654 (2010).
[CrossRef]

Shvets, G.

Sigmund, O.

J. Grgic, J. R. Ott, F. Wang, O. Sigmund, A. P. Jauho, J. Mørk, and N. A. Mortensen, “Fundamental limitations to gain enhancement in periodic media and waveguides,” Phys. Rev. Lett.108, 183903 (2012).
[CrossRef] [PubMed]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev.5, 308–321 (2011).
[CrossRef]

Sipe, J. E.

J. E. Sipe, N. A. R. Bhat, P. Chak, and S. Pereira, “Effective field theory for the nonlinear optical properties of photonic crystal,” Phys. Rev. E69,016604 (2004).
[CrossRef]

Spannagel, A.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Spasenovic, M.

Stewart, J. W.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Stobbe, S.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008).
[CrossRef]

Strzelecka, E.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Studenkov, P.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Sun, H.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Sünner, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Takeda, K.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
[CrossRef]

Tanabe, T.

Tang, J.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Taniyama, H.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
[CrossRef]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26, 1396–1403 (2008).
[CrossRef]

Taylor, B. D.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Thomson, K. K.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Thyrrestrup, H.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008).
[CrossRef]

Tromborg, B.

B. Tromborg, H. E. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: Modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron.30, 939–956 (1994).
[CrossRef]

Tsai, H.-S.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Urzhumov, Y.

Van Leeuwen, M.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Vuckovic, J.

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5, 297–300 (2011).
[CrossRef]

Wang, F.

J. Grgic, J. R. Ott, F. Wang, O. Sigmund, A. P. Jauho, J. Mørk, and N. A. Mortensen, “Fundamental limitations to gain enhancement in periodic media and waveguides,” Phys. Rev. Lett.108, 183903 (2012).
[CrossRef] [PubMed]

Watanabe, H.

E. Mizuta, H. Watanabe, and T. Baba, “All semiconductor low-Δ photonic crystal waveguide for semiconductor optical amplifier,” Jpn. J. Appl. Phys.45, 6116–6120 (2006).
[CrossRef]

Welch, D.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

White, T. P.

Williams, W.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Wong, C. W.

N. C. Panoiu, J. F. MicMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron.16, 257–266 (2010).
[CrossRef]

Wu, K.-T.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Xue, W.

J. Mørk, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol.25, 083002 (2010).
[CrossRef]

Zhang, J.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Ziari, M.

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

R. Kappeler, P. Kasper, H. Jäckel, and C. Hafner, “Record-low propagation losses of 154dB/cm for substrate-type W1 photonic crystal waveguides by means of hole shape engineering,” Appl. Phys. Lett.101, 131108 (2012).
[CrossRef]

J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Electron. Lett. (1)

T. Liu, K. Obermann, K. Petermann, F. Girardin, and G. Guekos, “Effect of saturation caused by amplified spontaneous emission on semiconductor optical amplifier performance,” Electron. Lett.33, 2042–2043 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
[CrossRef]

B. Tromborg, H. E. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: Modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron.30, 939–956 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

J. Mørk, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron.5, 851–860 (1999).
[CrossRef]

F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011).
[CrossRef]

N. C. Panoiu, J. F. MicMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron.16, 257–266 (2010).
[CrossRef]

J. Appl. Phys. (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75, 1896–1899 (1994).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (1)

E. Mizuta, H. Watanabe, and T. Baba, “All semiconductor low-Δ photonic crystal waveguide for semiconductor optical amplifier,” Jpn. J. Appl. Phys.45, 6116–6120 (2006).
[CrossRef]

Laser Photonics Rev. (1)

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev.5, 308–321 (2011).
[CrossRef]

Nat. Photonics (4)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics4, 648–654 (2010).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5, 297–300 (2011).
[CrossRef]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013).
[CrossRef]

Opt. Commun. (1)

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun.164, 51–55 (1999).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B73, 165125 (2006).
[CrossRef]

Phys. Rev. E (1)

J. E. Sipe, N. A. R. Bhat, P. Chak, and S. Pereira, “Effective field theory for the nonlinear optical properties of photonic crystal,” Phys. Rev. E69,016604 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

J. Grgic, J. R. Ott, F. Wang, O. Sigmund, A. P. Jauho, J. Mørk, and N. A. Mortensen, “Fundamental limitations to gain enhancement in periodic media and waveguides,” Phys. Rev. Lett.108, 183903 (2012).
[CrossRef] [PubMed]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008).
[CrossRef]

Semicond. Sci. Technol. (1)

J. Mørk, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol.25, 083002 (2010).
[CrossRef]

Other (3)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

www.comsol.com .

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of active photonic crystal membrane waveguide with a single quantum well layer embedded in the middle of the membrane. (b) Optical mode profile of fundamental TE-like guided modes at λ = 1550nm in the reference passive W1 line-defect photonic crystal membrane waveguide: Side- and top-views of time-averaged electric energy density. (c) Depleted population inversion factor in active material. (Parameters: lattice period a=398nm, air-hole radius r=0.3a, membrane thickness h=0.85a, background refractive index n b = 11.2, quantum well thickness hQW =10nm).

Fig. 2
Fig. 2

Calculated slow-light enhanced small-signal modal gain in a W1 line-defect PhC membrane with a single QW layer. (a) Band diagram of passive PhC waveguide. (b) Group index ng; (c) confinement factor Γ%; (d) optical mode volume for averaged electric energy density Vopt ; (e) population inversion factor finv; (f) modal gain gmod as a function of normalized frequency. (gmat = 1000cm−1).

Fig. 3
Fig. 3

Slow-light-enhanced modal gain saturation in a W1 line-defect PhC membrane with a single QW layer. (a) Comparison of modal gain as a function of input power between: full model with microscopic carrier depletion description, Eq. (3), and effective model with averaged carrier depletion description, Eq. (8), with constant active material volume Vact = ΓVopt. (b) Best fit of active material volume Vact, to be used in the effective model, as a function of input power in effective model. Dashed line gives the value of ΓVopt. Normalized frequency 0.254[c/a].

Fig. 4
Fig. 4

Slow-light-enhanced modal gain saturation in a W1 line-defect PhC membrane with different number of QW layers based on full model. (a) Modal gain as a function of input power. Normalized frequency 0.254[c/a]. (b) 3dB saturation power as a function of frequency. Dashed line indicates the 3dB saturation power of PhC waveguide based on effective model with Vact = ΓVopt. Dash dotted line indicates the results for a conventional SOA based on effective model with a constant group index ng = 4 and other parameters assumed identical to the PhC waveguides.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

[ E ( r , t ) , H ( r , t ) ] = 1 2 [ e ( r ) , h ( r ) ] ψ ( z ) exp ( i β z i ω t ) + c . c . ,
P pert ( r , t ) = 1 2 ε 0 χ pert ( r ) e ( r ) ψ ( z ) exp ( i β z i ω t ) + c . c . ,
0 = R p ( r ) R s t ( r ) N ( r ) τ s ,
R s t ( r ) = Im { ω P pert * ( r ) E ( r ) } h ¯ ω
R s t ( r ) = 1 h ¯ ω c n b g mat F ( r ) f inv ( r ) 2 4 ε 0 n b 2 | e ( r ) | 2 | ψ ( z ) | 2
= Γ g mat a h ¯ ω n g n b ε 0 n b 2 F ( r ) | e ( r ) | 2 f inv ( r ) ε 0 n b 2 F ( r ) | e ( r ) | 2 | ψ ( z ) | 2 P z , Γ ε 0 n b 2 F ( r ) | e ( r ) | 2 ε 0 n b 2 ( r ) | e ( r ) | 2
g mod = h ¯ ω R s t ( r ) a | ψ ( 0 ) | 2 P z = Γ g mat n g n b f ¯ inv , f ¯ inv = ε 0 n b 2 F ( r ) | e ( r ) | 2 f inv ( r ) ε 0 n b 2 F ( r ) | e ( r ) | 2
0 = R P V act R s t V act N V act τ s ,
R s t V act = g mat h ¯ ω Γ a V act n g n b f ¯ inv | ψ ( z ) | 2 P z = g mat c n b Γ V opt V act f ¯ inv | ψ ( z ) | 2 N P
V opt = ε 0 n b ( r ) 2 | e ( r ) | 2 0.5 { ε 0 n b ( r ) 2 | e ( r ) | 2 } max

Metrics