Abstract

We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metrology of laser-guided particles in air-filled hollow-core photonic crystal fiber

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. St. J. Russell
Opt. Lett. 37(1) 91-93 (2012)

Optofluidic immobility of particles trapped in liquid-filled hollow-core photonic crystal fiber

M. K. Garbos, T. G. Euser, and P. St. J. Russell
Opt. Express 19(20) 19643-19652 (2011)

Dynamic control of higher-order modes in hollow-core photonic crystal fibers

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell
Opt. Express 16(22) 17972-17981 (2008)

References

  • View by:
  • |
  • |
  • |

  1. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [Crossref]
  2. T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin, “Automated single-cell manipulation and sorting by light trapping,” Appl. Opt. 26(24), 5311–5316 (1987).
    [Crossref] [PubMed]
  3. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
    [Crossref] [PubMed]
  4. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [Crossref] [PubMed]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  6. T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).
    [Crossref]
  7. D. B. Ruffner and D. G. Grier, “Optical conveyors: A class of active tractor beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
    [Crossref] [PubMed]
  8. T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88(2), 020401 (2001).
    [Crossref] [PubMed]
  9. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  10. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
    [Crossref] [PubMed]
  11. S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
    [Crossref] [PubMed]
  12. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
    [Crossref]
  13. P. Schneeweiss, S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “A nanofiber-based optical conveyor belt for cold atoms,” Appl. Phys. B 110(3), 279–283 (2013).
    [Crossref]
  14. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
    [Crossref] [PubMed]
  15. S. Mandal and D. Erickson, “Optofluidic transport in liquid core waveguiding structures,” Appl. Phys. Lett. 90(18), 184103 (2007).
    [Crossref]
  16. S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
    [Crossref] [PubMed]
  17. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
    [Crossref] [PubMed]
  18. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
    [Crossref] [PubMed]
  19. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  20. F. Benabid, J. Knight, and P. St.J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10(21), 1195–1203 (2002).
    [Crossref] [PubMed]
  21. T. G. Euser, M. K. Garbos, J. S. Y. Chen, and P. St.J. Russell, “Precise balancing of viscous and radiation forces on a particle in liquid-filled photonic bandgap fiber,” Opt. Lett. 34(23), 3674–3676 (2009).
    [Crossref] [PubMed]
  22. O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Metrology of laser-guided particles in air-filled hollow-core photonic crystal fiber,” Opt. Lett. 37(1), 91–93 (2012).
    [Crossref] [PubMed]
  23. M. K. Garbos, T. G. Euser, O. A. Schmidt, S. Unterkofler, and P. St.J. Russell, “Doppler velocimetry on microparticles trapped and propelled by laser light in liquid-filled photonic crystal fiber,” Opt. Lett. 36(11), 2020–2022 (2011).
    [Crossref] [PubMed]
  24. P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing,” Opt. Express 17(26), 24342–24348 (2009).
    [Crossref] [PubMed]
  25. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  26. J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St.J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
    [Crossref] [PubMed]
  27. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
    [Crossref]
  28. S. Unterkofler, M. K. Garbos, T. G. Euser, and P. St.J Russell, “Long-distance laser propulsion and deformation- monitoring of cells in optofluidic photonic crystal fiber,” J. Biophotonics 6(9), 743–752 (2013).
    [Crossref] [PubMed]
  29. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [Crossref] [PubMed]
  30. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008).
    [Crossref] [PubMed]
  31. C. C. Olson, R. T. Schermer, and F. Bucholtz, “Tailored optical force fields using evolutionary algorithms,” Opt. Express 19(19), 18543–18557 (2011).
    [Crossref] [PubMed]
  32. R. Storn and K. Price, “Differential Evolution: a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
    [Crossref]
  33. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
    [Crossref]
  34. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
    [Crossref] [PubMed]
  35. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A 24(11), 3500–3507 (2007).
    [Crossref] [PubMed]
  36. D. Flamm, C. Schulze, D. Naidoo, S. Schröter, A. Forbes, and M. Duparré, “All-digital holographic tool for mode excitation and analysis in optical fibers,” J. Lightwave Technol. 31(7), 1023–1032 (2013).
    [Crossref]

2013 (3)

P. Schneeweiss, S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “A nanofiber-based optical conveyor belt for cold atoms,” Appl. Phys. B 110(3), 279–283 (2013).
[Crossref]

S. Unterkofler, M. K. Garbos, T. G. Euser, and P. St.J Russell, “Long-distance laser propulsion and deformation- monitoring of cells in optofluidic photonic crystal fiber,” J. Biophotonics 6(9), 743–752 (2013).
[Crossref] [PubMed]

D. Flamm, C. Schulze, D. Naidoo, S. Schröter, A. Forbes, and M. Duparré, “All-digital holographic tool for mode excitation and analysis in optical fibers,” J. Lightwave Technol. 31(7), 1023–1032 (2013).
[Crossref]

2012 (2)

2011 (3)

2010 (2)

2009 (4)

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing,” Opt. Express 17(26), 24342–24348 (2009).
[Crossref] [PubMed]

T. G. Euser, M. K. Garbos, J. S. Y. Chen, and P. St.J. Russell, “Precise balancing of viscous and radiation forces on a particle in liquid-filled photonic bandgap fiber,” Opt. Lett. 34(23), 3674–3676 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

2006 (2)

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

2005 (2)

2002 (1)

2001 (3)

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88(2), 020401 (2001).
[Crossref] [PubMed]

1999 (1)

1997 (1)

R. Storn and K. Price, “Differential Evolution: a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[Crossref]

1996 (2)

S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
[Crossref] [PubMed]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[Crossref] [PubMed]

1995 (1)

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref] [PubMed]

1987 (1)

1986 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Abdolvand, A.

Alt, W.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Anderson, D. Z.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

Arrizón, V.

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Benabid, F.

Birks, T. A.

Bjorkholm, J. E.

Bouchal, Z.

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).
[Crossref]

Bucholtz, F.

Buican, T. N.

Campos, J.

Carrada, R.

Chen, J. S. Y.

Chikkatur, A. P.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88(2), 020401 (2001).
[Crossref] [PubMed]

Chu, S.

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

Cornell, E. A.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

Cottrell, D. M.

Couny, F.

Crissman, H. A.

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Davis, J. A.

Dawkins, S. T.

P. Schneeweiss, S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “A nanofiber-based optical conveyor belt for cold atoms,” Appl. Phys. B 110(3), 279–283 (2013).
[Crossref]

Deamer, D. W.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

Desyatnikov, A. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

Duparré, M.

Dziedzic, J. M.

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

S. Mandal and D. Erickson, “Optofluidic transport in liquid core waveguiding structures,” Appl. Phys. Lett. 90(18), 184103 (2007).
[Crossref]

Euser, T. G.

Farr, L.

Flamm, D.

Forbes, A.

Garbos, M. K.

Garcés-Chávez, V.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

Gomer, V.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

González, L. A.

Görlitz, A.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88(2), 020401 (2001).
[Crossref] [PubMed]

Grier, D. G.

D. B. Ruffner and D. G. Grier, “Optical conveyors: A class of active tractor beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref] [PubMed]

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Gupta, S.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88(2), 020401 (2001).
[Crossref] [PubMed]

Gustavson, T. L.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88(2), 020401 (2001).
[Crossref] [PubMed]

Hawkins, A. R.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing,” Opt. Express 17(26), 24342–24348 (2009).
[Crossref] [PubMed]

Hölzer, P.

Ito, H.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[Crossref] [PubMed]

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Jhe, W.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[Crossref] [PubMed]

Joly, N. Y.

Kaminski, C. F.

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Kawata, S.

Ketterle, W.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88(2), 020401 (2001).
[Crossref] [PubMed]

Kivshar, Y. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Knight, J.

Knight, J. C.

Kollárová, V.

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).
[Crossref]

Krolikowski, W.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Kühn, S.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing,” Opt. Express 17(26), 24342–24348 (2009).
[Crossref] [PubMed]

Kuhr, S.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Leanhardt, A. E.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88(2), 020401 (2001).
[Crossref] [PubMed]

Lee, K. I.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[Crossref] [PubMed]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Lunt, E. J.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing,” Opt. Express 17(26), 24342–24348 (2009).
[Crossref] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Mandal, S.

S. Mandal and D. Erickson, “Optofluidic transport in liquid core waveguiding structures,” Appl. Phys. Lett. 90(18), 184103 (2007).
[Crossref]

Mangan, B. J.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Martin, J. C.

Mason, M. W.

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Measor, P.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing,” Opt. Express 17(26), 24342–24348 (2009).
[Crossref] [PubMed]

Meschede, D.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Mitsch, R.

P. Schneeweiss, S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “A nanofiber-based optical conveyor belt for cold atoms,” Appl. Phys. B 110(3), 279–283 (2013).
[Crossref]

Montgomery, D.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Moreno, I.

Müller, M.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Naidoo, D.

Nakata, T.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[Crossref] [PubMed]

Nazarkin, A.

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Nold, J.

Ohtsu, M.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[Crossref] [PubMed]

Olson, C. C.

Phillips, B. S.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing,” Opt. Express 17(26), 24342–24348 (2009).
[Crossref] [PubMed]

Podlipensky, A.

Price, K.

R. Storn and K. Price, “Differential Evolution: a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[Crossref]

Pritchard, D. E.

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88(2), 020401 (2001).
[Crossref] [PubMed]

Rauschenbeutel, A.

P. Schneeweiss, S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “A nanofiber-based optical conveyor belt for cold atoms,” Appl. Phys. B 110(3), 279–283 (2013).
[Crossref]

Reitz, D.

P. Schneeweiss, S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “A nanofiber-based optical conveyor belt for cold atoms,” Appl. Phys. B 110(3), 279–283 (2013).
[Crossref]

Renn, M. J.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

Roberts, P. J.

Rode, A. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Ruffner, D. B.

D. B. Ruffner and D. G. Grier, “Optical conveyors: A class of active tractor beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref] [PubMed]

Ruiz, U.

Russell, P. S. J.

Russell, P. St.J.

Sabert, H.

Sakaki, K.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[Crossref] [PubMed]

Salzman, G. C.

Scharrer, M.

Schermer, R. T.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Schmidt, H.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing,” Opt. Express 17(26), 24342–24348 (2009).
[Crossref] [PubMed]

Schmidt, O. A.

Schneeweiss, P.

P. Schneeweiss, S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “A nanofiber-based optical conveyor belt for cold atoms,” Appl. Phys. B 110(3), 279–283 (2013).
[Crossref]

Schrader, D.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Schröter, S.

Schulze, C.

Šerý, M.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

Shvedov, V. G.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Šiler, M.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

Smyth, M. J.

St.J Russell, P.

S. Unterkofler, M. K. Garbos, T. G. Euser, and P. St.J Russell, “Long-distance laser propulsion and deformation- monitoring of cells in optofluidic photonic crystal fiber,” J. Biophotonics 6(9), 743–752 (2013).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

Stewart, C. C.

Storn, R.

R. Storn and K. Price, “Differential Evolution: a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[Crossref]

Tani, T.

Tomlinson, A.

Unterkofler, S.

S. Unterkofler, M. K. Garbos, T. G. Euser, and P. St.J Russell, “Long-distance laser propulsion and deformation- monitoring of cells in optofluidic photonic crystal fiber,” J. Biophotonics 6(9), 743–752 (2013).
[Crossref] [PubMed]

M. K. Garbos, T. G. Euser, O. A. Schmidt, S. Unterkofler, and P. St.J. Russell, “Doppler velocimetry on microparticles trapped and propelled by laser light in liquid-filled photonic crystal fiber,” Opt. Lett. 36(11), 2020–2022 (2011).
[Crossref] [PubMed]

Vdovin, O.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

Vetsch, E.

P. Schneeweiss, S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “A nanofiber-based optical conveyor belt for cold atoms,” Appl. Phys. B 110(3), 279–283 (2013).
[Crossref]

Whyte, G.

Wieman, C. E.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

Williams, D. P.

Wong, G. K. L.

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Yzuel, M. J.

Zemánek, P.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

P. Schneeweiss, S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “A nanofiber-based optical conveyor belt for cold atoms,” Appl. Phys. B 110(3), 279–283 (2013).
[Crossref]

Appl. Phys. Lett. (2)

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

S. Mandal and D. Erickson, “Optofluidic transport in liquid core waveguiding structures,” Appl. Phys. Lett. 90(18), 184103 (2007).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Biophys. J. (2)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Comput. J. (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

J. Biophotonics (1)

S. Unterkofler, M. K. Garbos, T. G. Euser, and P. St.J Russell, “Long-distance laser propulsion and deformation- monitoring of cells in optofluidic photonic crystal fiber,” J. Biophotonics 6(9), 743–752 (2013).
[Crossref] [PubMed]

J. Glob. Optim. (1)

R. Storn and K. Price, “Differential Evolution: a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Lab Chip (1)

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Nature (1)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

New J. Phys. (1)

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. B (1)

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

Phys. Rev. Lett. (6)

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76(24), 4500–4503 (1996).
[Crossref] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref] [PubMed]

D. B. Ruffner and D. G. Grier, “Optical conveyors: A class of active tractor beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref] [PubMed]

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88(2), 020401 (2001).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Science (1)

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Supplementary Material (2)

» Media 1: AVI (699 KB)     
» Media 2: AVI (1290 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Intermodal beating in HC-PCF. (a) Experimental speed variations of 6 µm diameter particle propelled along a HC-PCF (core diameter 12 µm). (b) Calculated intensity patterns of the fundamental and higher order modes. (c) Intensity distribution in the yz-plane of a 90% LP01, 10% LP11 mode mixture. The dashed line indicates the computed particle trajectory.
Fig. 2
Fig. 2 Principle of mode-based conveyor belt. (a) Schematic of beam configuration. (b) The intermodal beat-pattern creates a series of trapping sites along the fiber, spaced by half the beat-length of the two forward-propagating modes. Shifting the relative phase between the modes results in a moving intensity pattern that carries the microparticle along the HC-PCF.
Fig. 3
Fig. 3 Optical force landscape created by the mode-based conveyor belt calculated using a ray-optics approach. (a) Transverse component of the optical force acting on a 6 µm microparticle; the arrows indicate the force direction. (b) Axial component of the optical force, the encircled intersections between the two zero-force lines indicating possible trapping positions. (c) Calculated transverse displacement of microparticle as a function of LP11 content. (d) Effect of LP11 content on axial stiffness of dual-beam trap. All data are normalized to 1 W of total (forward plus backward) optical power.
Fig. 4
Fig. 4 Optical set-up for optimized excitation of coherent superpositions of fiber modes. (a) Set-up for launching a superposition of forward-propagating LP11 and LP01 modes together with a counter-propagating LP01 mode; SLM: spatial light modulator, QPD: quadrant photodiode. (b) Scanning electron micrograph of HC-PCF structure with a core diameter of 12 µm (the inset shows a schematic of a 6 µm diameter particle). (c) Cut-back measurement of LP01 fiber loss. (d) SLM phase pattern and corresponding intensity pattern at fiber endface after optimization.
Fig. 5
Fig. 5 Experimental demonstration of mode-based conveyor belt. (a,b) Intensity profile of the beat-pattern of a mode mixture (10% LP11) emerging from PCF, measured by increasing Δφ (Media 1). (c,d) Sequence of optical images of light side-scattered from the microparticle while Δφ is ramped up and down (Media 2). (e,f) QPD signals while increasing and decreasing Δφ.
Fig. 6
Fig. 6 Model for mode conversion by the moving particle. Sketch of the particle-induced scattering of a backward-propagating LP01 mode into guided and radiating modes. The asymmetry of the guided mode mixture is analyzed by the QPD.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

z T = 1 2α ln( P 0 P L )+ L 2 ,
L B = 2 π / ( β 11 β 01 ) = 8.87 a 2 / λ ,
B ( x , y ; z = 0 ) = B 01 j τ j ( x p , y p ) a j ( x , y ) e ( i β j α j / 2 ) z p ( t ) ,
| τ 01 | 2 + | τ 11 | 2 + | τ rad | 2 = 1 ,
| B ( x , y , 0 ) B 01 | 2 = 2 | τ 01 τ 11 | a 01 a 11 cos( ψ + Δ β z p ) e ( α 01 + α 11 ) z p / 2 + a 01 2 | τ 01 | 2 e α 01 z p + a 11 2 | τ 11 | 2 e α 11 z p ,

Metrics