Abstract

We demonstrate compact, broadband, ultralow loss silicon waveguide crossings operating at 1550 nm and 1310 nm. Cross-wafer measurement of 30 dies shows transmission insertion loss of − 0.028 ± 0.009 dB for the 1550 nm device and − 0.017 ± 0.005 dB for the 1310 nm device. Both crossings show crosstalk lower than − 37 dB. The devices were fabricated in a CMOS-compatible process using 248 nm optical lithography with a single etch step.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
    [CrossRef]
  2. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013).
    [CrossRef]
  3. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag.51(3), 72–77 (2013).
    [CrossRef]
  4. W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.32(19), 2801–2803 (2007).
    [CrossRef] [PubMed]
  5. P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, and J. Martí, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett.34(18), 2760–2762 (2009).
    [CrossRef] [PubMed]
  6. Y. Zhang, S. Yang, A. E. Lim, G. Lo, C. Galland, T. Baehr-jones, and M. Hochberg, “A CMOS-Compatible, Low-Loss, and Low-Crosstalk Silicon Waveguide Crossing,” IEEE Photon. Technol. Lett.25(5), 422–425 (2013).
    [CrossRef]
  7. L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express20(17), 18977–18985 (2012).
    [CrossRef] [PubMed]
  8. P. Sanchis, J. Galan, A. Griol, J. Marti, A. M. Piqueras, and M. J. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
    [CrossRef]
  9. H. Liu, H. Tam, P. K. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
    [CrossRef]
  10. H. Chen and A. W. Poon, “Low-Loss Multimode-Interference-Based Crossings for Silicon Wire Waveguides,” IEEE Photon. Technol. Lett.18(21), 2260–2262 (2006).
    [CrossRef]
  11. Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).
  12. M. Popovic, “Low-loss Bloch waves in open structures and highly compact, efficient Si waveguide-crossing arrays,” Lasers Electro-Optics Soc. 20th Annu. Meet. IEEE 56–57 (2007).
    [CrossRef]
  13. Y. Zhang, A. Hosseini, X. Xu, D. Kwong, and R. T. Chen, “Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers,” Opt. Lett.38(18), 3608–3611 (2013).
    [CrossRef] [PubMed]
  14. A. V. Tsarev, “Efficient silicon wire waveguide crossing with negligible loss and crosstalk,” Opt. Express19(15), 13732–13737 (2011).
    [CrossRef] [PubMed]
  15. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D. X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express18(15), 16146–16155 (2010).
    [CrossRef] [PubMed]
  16. Y. Watanabe, Y. Sugimoto, N. Ikeda, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, and K. Asakawa, “Broadband waveguide intersection with low crosstalk in two-dimensional photonic crystal circuits by using topology optimization,” Opt. Express14(20), 9502–9507 (2006).
    [CrossRef] [PubMed]
  17. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron.16(1), 6–22 (2010).
    [CrossRef]
  18. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express21(1), 1310–1316 (2013).
    [CrossRef] [PubMed]
  19. http://docs.lumerical.com/en/mode/ref_varfdtd_physics_main.html
  20. lumerical_website,” http://www.lumerical.com/ .
  21. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express20(12), 13425–13439 (2012).
    [CrossRef] [PubMed]
  22. M. Hochberg, N. Harris, Ran Ding, A. Yi Zhang, Novack, Zhe Xuan, and T. Baehr-Jones, “Silicon photonics The next fabless semiconductor industry,” IEEE Solid-State Circuits5(1), 48–58 (2013).
    [CrossRef]
  23. A. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001).
  24. W. Bogaerts, P. Bradt, L. Vanholme, P. Bienstman, and R. Baets, “Closed-loop modeling of silicon nanophotonics from design to fabrication and back again,” Opt. Quantum Electron.40(11-12), 801–811 (2008).
    [CrossRef]
  25. X. Wang, W. Shi, M. Hochberg, K. Adam, E. Schelew, J. F. Young, N. F. Jaeger, and L. Chrostowski, “Lithography simulation for the fabrication of silicon photonic devices with deep-ultraviolet lithography,” 9th Int. Conf. Gr. IV Photonics 288–290 (2012).
    [CrossRef]

2013 (6)

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag.51(3), 72–77 (2013).
[CrossRef]

Y. Zhang, S. Yang, A. E. Lim, G. Lo, C. Galland, T. Baehr-jones, and M. Hochberg, “A CMOS-Compatible, Low-Loss, and Low-Crosstalk Silicon Waveguide Crossing,” IEEE Photon. Technol. Lett.25(5), 422–425 (2013).
[CrossRef]

Y. Zhang, A. Hosseini, X. Xu, D. Kwong, and R. T. Chen, “Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers,” Opt. Lett.38(18), 3608–3611 (2013).
[CrossRef] [PubMed]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express21(1), 1310–1316 (2013).
[CrossRef] [PubMed]

M. Hochberg, N. Harris, Ran Ding, A. Yi Zhang, Novack, Zhe Xuan, and T. Baehr-Jones, “Silicon photonics The next fabless semiconductor industry,” IEEE Solid-State Circuits5(1), 48–58 (2013).
[CrossRef]

2012 (3)

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express20(12), 13425–13439 (2012).
[CrossRef] [PubMed]

Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).

L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express20(17), 18977–18985 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (3)

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D. X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express18(15), 16146–16155 (2010).
[CrossRef] [PubMed]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron.16(1), 6–22 (2010).
[CrossRef]

2009 (1)

2008 (1)

W. Bogaerts, P. Bradt, L. Vanholme, P. Bienstman, and R. Baets, “Closed-loop modeling of silicon nanophotonics from design to fabrication and back again,” Opt. Quantum Electron.40(11-12), 801–811 (2008).
[CrossRef]

2007 (2)

W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.32(19), 2801–2803 (2007).
[CrossRef] [PubMed]

P. Sanchis, J. Galan, A. Griol, J. Marti, A. M. Piqueras, and M. J. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

2006 (2)

2004 (1)

H. Liu, H. Tam, P. K. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
[CrossRef]

Arakawa, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag.51(3), 72–77 (2013).
[CrossRef]

Asakawa, K.

Baehr-Jones, T.

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express21(1), 1310–1316 (2013).
[CrossRef] [PubMed]

M. Hochberg, N. Harris, Ran Ding, A. Yi Zhang, Novack, Zhe Xuan, and T. Baehr-Jones, “Silicon photonics The next fabless semiconductor industry,” IEEE Solid-State Circuits5(1), 48–58 (2013).
[CrossRef]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Y. Zhang, S. Yang, A. E. Lim, G. Lo, C. Galland, T. Baehr-jones, and M. Hochberg, “A CMOS-Compatible, Low-Loss, and Low-Crosstalk Silicon Waveguide Crossing,” IEEE Photon. Technol. Lett.25(5), 422–425 (2013).
[CrossRef]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

Baets, R.

W. Bogaerts, P. Bradt, L. Vanholme, P. Bienstman, and R. Baets, “Closed-loop modeling of silicon nanophotonics from design to fabrication and back again,” Opt. Quantum Electron.40(11-12), 801–811 (2008).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.32(19), 2801–2803 (2007).
[CrossRef] [PubMed]

Bergman, K.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron.16(1), 6–22 (2010).
[CrossRef]

Biberman, A.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron.16(1), 6–22 (2010).
[CrossRef]

Bienstman, P.

W. Bogaerts, P. Bradt, L. Vanholme, P. Bienstman, and R. Baets, “Closed-loop modeling of silicon nanophotonics from design to fabrication and back again,” Opt. Quantum Electron.40(11-12), 801–811 (2008).
[CrossRef]

Bock, P. J.

Bogaerts, W.

W. Bogaerts, P. Bradt, L. Vanholme, P. Bienstman, and R. Baets, “Closed-loop modeling of silicon nanophotonics from design to fabrication and back again,” Opt. Quantum Electron.40(11-12), 801–811 (2008).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.32(19), 2801–2803 (2007).
[CrossRef] [PubMed]

Bowers, J. E.

Bradt, P.

W. Bogaerts, P. Bradt, L. Vanholme, P. Bienstman, and R. Baets, “Closed-loop modeling of silicon nanophotonics from design to fabrication and back again,” Opt. Quantum Electron.40(11-12), 801–811 (2008).
[CrossRef]

Brimont, A.

Chan, J.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron.16(1), 6–22 (2010).
[CrossRef]

Cheben, P.

Chen, H.

H. Chen and A. W. Poon, “Low-Loss Multimode-Interference-Based Crossings for Silicon Wire Waveguides,” IEEE Photon. Technol. Lett.18(21), 2260–2262 (2006).
[CrossRef]

Chen, L.

Chen, R. T.

Chen, Y. K.

Cuesta, F.

Cunningham, J. E.

Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).

Dai, D.

Delâge, A.

Densmore, A.

Ding, R.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Dumon, P.

Fujita, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag.51(3), 72–77 (2013).
[CrossRef]

Galan, J.

P. Sanchis, J. Galan, A. Griol, J. Marti, A. M. Piqueras, and M. J. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Galán, J. V.

Galland, C.

Y. Zhang, S. Yang, A. E. Lim, G. Lo, C. Galland, T. Baehr-jones, and M. Hochberg, “A CMOS-Compatible, Low-Loss, and Low-Crosstalk Silicon Waveguide Crossing,” IEEE Photon. Technol. Lett.25(5), 422–425 (2013).
[CrossRef]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express21(1), 1310–1316 (2013).
[CrossRef] [PubMed]

Griol, A.

P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, and J. Martí, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett.34(18), 2760–2762 (2009).
[CrossRef] [PubMed]

P. Sanchis, J. Galan, A. Griol, J. Marti, A. M. Piqueras, and M. J. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Håkansson, A.

Hall, T. J.

Harris, N.

M. Hochberg, N. Harris, Ran Ding, A. Yi Zhang, Novack, Zhe Xuan, and T. Baehr-Jones, “Silicon photonics The next fabless semiconductor industry,” IEEE Solid-State Circuits5(1), 48–58 (2013).
[CrossRef]

Hochberg, M.

M. Hochberg, N. Harris, Ran Ding, A. Yi Zhang, Novack, Zhe Xuan, and T. Baehr-Jones, “Silicon photonics The next fabless semiconductor industry,” IEEE Solid-State Circuits5(1), 48–58 (2013).
[CrossRef]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express21(1), 1310–1316 (2013).
[CrossRef] [PubMed]

Y. Zhang, S. Yang, A. E. Lim, G. Lo, C. Galland, T. Baehr-jones, and M. Hochberg, “A CMOS-Compatible, Low-Loss, and Low-Crosstalk Silicon Waveguide Crossing,” IEEE Photon. Technol. Lett.25(5), 422–425 (2013).
[CrossRef]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

Hosseini, A.

Ikeda, N.

Janz, S.

Kitagawa, Y.

Krishnamoorthy, A. V.

Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).

Kwong, D.

Lapointe, J.

Lee, B. G.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron.16(1), 6–22 (2010).
[CrossRef]

Lee, J.

Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).

Li, G.

Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).

Lim, A. E.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Y. Zhang, S. Yang, A. E. Lim, G. Lo, C. Galland, T. Baehr-jones, and M. Hochberg, “A CMOS-Compatible, Low-Loss, and Low-Crosstalk Silicon Waveguide Crossing,” IEEE Photon. Technol. Lett.25(5), 422–425 (2013).
[CrossRef]

Lim, A. E.-J.

Liu, H.

H. Liu, H. Tam, P. K. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
[CrossRef]

Liu, Y.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Lo, G.

Y. Zhang, S. Yang, A. E. Lim, G. Lo, C. Galland, T. Baehr-jones, and M. Hochberg, “A CMOS-Compatible, Low-Loss, and Low-Crosstalk Silicon Waveguide Crossing,” IEEE Photon. Technol. Lett.25(5), 422–425 (2013).
[CrossRef]

Lo, G.-Q.

Lo Guo-qiang, P.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Luo, Y.

Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).

Marti, J.

P. Sanchis, J. Galan, A. Griol, J. Marti, A. M. Piqueras, and M. J. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Martí, J.

Mizutani, A.

Nakamura, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag.51(3), 72–77 (2013).
[CrossRef]

Novack,

M. Hochberg, N. Harris, Ran Ding, A. Yi Zhang, Novack, Zhe Xuan, and T. Baehr-Jones, “Silicon photonics The next fabless semiconductor industry,” IEEE Solid-State Circuits5(1), 48–58 (2013).
[CrossRef]

Novack, A.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Ozaki, N.

Perdigues, M. J.

P. Sanchis, J. Galan, A. Griol, J. Marti, A. M. Piqueras, and M. J. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Piqueras, A. M.

P. Sanchis, J. Galan, A. Griol, J. Marti, A. M. Piqueras, and M. J. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Poon, A. W.

H. Chen and A. W. Poon, “Low-Loss Multimode-Interference-Based Crossings for Silicon Wire Waveguides,” IEEE Photon. Technol. Lett.18(21), 2260–2262 (2006).
[CrossRef]

Pun, E.

H. Liu, H. Tam, P. K. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
[CrossRef]

Raj, K.

Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).

Ran Ding,

M. Hochberg, N. Harris, Ran Ding, A. Yi Zhang, Novack, Zhe Xuan, and T. Baehr-Jones, “Silicon photonics The next fabless semiconductor industry,” IEEE Solid-State Circuits5(1), 48–58 (2013).
[CrossRef]

Sanchis, P.

P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, and J. Martí, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett.34(18), 2760–2762 (2009).
[CrossRef] [PubMed]

P. Sanchis, J. Galan, A. Griol, J. Marti, A. M. Piqueras, and M. J. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Schmid, J. H.

Streshinsky, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Sugimoto, Y.

Takata, Y.

Tam, H.

H. Liu, H. Tam, P. K. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
[CrossRef]

Tang, Y.

Thacker, H.

Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).

Tsarev, A. V.

Urino, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag.51(3), 72–77 (2013).
[CrossRef]

Van Thourhout, D.

Vanholme, L.

W. Bogaerts, P. Bradt, L. Vanholme, P. Bienstman, and R. Baets, “Closed-loop modeling of silicon nanophotonics from design to fabrication and back again,” Opt. Quantum Electron.40(11-12), 801–811 (2008).
[CrossRef]

Villalba, P.

Wai, P. K.

H. Liu, H. Tam, P. K. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
[CrossRef]

Watanabe, Y.

Xu, D. X.

Xu, X.

Yang, S.

Y. Zhang, S. Yang, A. E. Lim, G. Lo, C. Galland, T. Baehr-jones, and M. Hochberg, “A CMOS-Compatible, Low-Loss, and Low-Crosstalk Silicon Waveguide Crossing,” IEEE Photon. Technol. Lett.25(5), 422–425 (2013).
[CrossRef]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express21(1), 1310–1316 (2013).
[CrossRef] [PubMed]

Yao, J.

Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).

Yi Zhang, A.

M. Hochberg, N. Harris, Ran Ding, A. Yi Zhang, Novack, Zhe Xuan, and T. Baehr-Jones, “Silicon photonics The next fabless semiconductor industry,” IEEE Solid-State Circuits5(1), 48–58 (2013).
[CrossRef]

Zhang, Y.

Zhe Xuan,

M. Hochberg, N. Harris, Ran Ding, A. Yi Zhang, Novack, Zhe Xuan, and T. Baehr-Jones, “Silicon photonics The next fabless semiconductor industry,” IEEE Solid-State Circuits5(1), 48–58 (2013).
[CrossRef]

Zheng, X.

Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).

Gr. IV Photonics (1)

Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).

IEEE Commun. Mag. (1)

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag.51(3), 72–77 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron.16(1), 6–22 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

H. Chen and A. W. Poon, “Low-Loss Multimode-Interference-Based Crossings for Silicon Wire Waveguides,” IEEE Photon. Technol. Lett.18(21), 2260–2262 (2006).
[CrossRef]

Y. Zhang, S. Yang, A. E. Lim, G. Lo, C. Galland, T. Baehr-jones, and M. Hochberg, “A CMOS-Compatible, Low-Loss, and Low-Crosstalk Silicon Waveguide Crossing,” IEEE Photon. Technol. Lett.25(5), 422–425 (2013).
[CrossRef]

P. Sanchis, J. Galan, A. Griol, J. Marti, A. M. Piqueras, and M. J. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

IEEE Solid-State Circuits (1)

M. Hochberg, N. Harris, Ran Ding, A. Yi Zhang, Novack, Zhe Xuan, and T. Baehr-Jones, “Silicon photonics The next fabless semiconductor industry,” IEEE Solid-State Circuits5(1), 48–58 (2013).
[CrossRef]

Nat. Photonics (1)

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

Opt. Commun. (1)

H. Liu, H. Tam, P. K. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Opt. Photonics News (1)

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Opt. Quantum Electron. (1)

W. Bogaerts, P. Bradt, L. Vanholme, P. Bienstman, and R. Baets, “Closed-loop modeling of silicon nanophotonics from design to fabrication and back again,” Opt. Quantum Electron.40(11-12), 801–811 (2008).
[CrossRef]

Other (5)

X. Wang, W. Shi, M. Hochberg, K. Adam, E. Schelew, J. F. Young, N. F. Jaeger, and L. Chrostowski, “Lithography simulation for the fabrication of silicon photonic devices with deep-ultraviolet lithography,” 9th Int. Conf. Gr. IV Photonics 288–290 (2012).
[CrossRef]

A. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001).

M. Popovic, “Low-loss Bloch waves in open structures and highly compact, efficient Si waveguide-crossing arrays,” Lasers Electro-Optics Soc. 20th Annu. Meet. IEEE 56–57 (2007).
[CrossRef]

http://docs.lumerical.com/en/mode/ref_varfdtd_physics_main.html

lumerical_website,” http://www.lumerical.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic device layout. The device is symmetric and constituted by four identical tapers. The taper is defined by spline interpolation of w1 to w13. (b) Log-scale Electric field distribution at 1550 nm from FDTD simulation. (c) Mode evolution of the left taper with light input from the left side.

Fig. 2
Fig. 2

Simulated transmittance, reflection and crosstalk of (a) 1550 nm crossing and (b) 1310 nm crossing in a 100 nm range.

Fig. 3
Fig. 3

Device performance characterization. (a) Experimental (dot curve) and fit (solid curve) spectra at different cascaded 1550 nm crossings. Inset is a fabricated test structure with 10-cascaded crossings. (b) Peak power (dots) extracted from measured spectra for 1550 nm crossing (blue) and 1310 nm crossing (purple). The slope from linear fitting of peak powers represents insertion loss per device. (c). Experimental spectra of reference GC loop (black) and crosstalk (blue). Inset is fabricated crosstalk test structure. (d) Insertion loss variation in a 60 nm range after de-embeding the spectrum of the reference GC loop.

Fig. 4
Fig. 4

Cross-wafer measurement. Contour plot (left part) and histogram analysis (right part) of insertion loss distribution for (a) 1550 nm crossing and (b) 1310 nm crossing.

Tables (1)

Tables Icon

Table 1 Crossing geometry parameters (μm)

Metrics