Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in an electromagnetically induced lattice,” Laser Phys. Lett.10, 055406 (2013).

[CrossRef]

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett.110, 093901 (2013).

[CrossRef]
[PubMed]

Y. Zhang, X. Yao, C. Yuan, P. Li, J. Yuan, W. Feng, S. Jia, and Y. Zhang, “Controllable multiwave mixing Talbot effect,” IEEE Photon. J.4, 2057–2065 (2012).

[CrossRef]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-wave mixing dipole soliton in laser-induced atomic gratings,” Phys. Rev. Lett.106, 093904 (2011).

[CrossRef]
[PubMed]

R.-G. Wan, J. Kou, L. Jiang, Y. Jiang, and J.-Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).

[CrossRef]

J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett.98, 081108 (2011).

[CrossRef]

C.-L. Cui, J.-H. Wu, J.-W. Gao, Y. Zhang, and N. Ba, “Double photonic bandgaps dynamically induced in a tripod system of cold atoms,” Opt. Express18, 4538–4546 (2010).

[CrossRef]
[PubMed]

J.-W. Gao, Y. Zhang, N. Ba, C.-L. Cui, and J.-H. Wu, “Dynamically induced double photonic bandgaps in the presence of spontaneously generated coherence,” Opt. Lett.35, 709–711 (2010).

[CrossRef]
[PubMed]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A80, 055804 (2009).

[CrossRef]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99, 123603 (2007).

[CrossRef]
[PubMed]

D. Petrosyan, “Tunable photonic band gaps with coherently driven atoms in optical lattices,” Phys. Rev. A76, 053823 (2007).

[CrossRef]

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, “Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li,” J. Phys. B: At. Mol. Opt. Phys.40, 1117–1129 (2007).

[CrossRef]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett.96, 073905 (2006).

[CrossRef]
[PubMed]

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L.-A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+ 1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97, 193904 (2006).

[CrossRef]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett.30, 699–701 (2005).

[CrossRef]
[PubMed]

A. M. Akulshin, A. Lezama, A. I. Sidorov, R. J. McLean, and P. Hannaford, “’storage of light’ in an atomic medium using electromagnetically induced absorption,” J. Phys. B: At. Mol. Opt. Phys.38, L365–L374 (2005).

[CrossRef]

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A70, 061804 (2004).

[CrossRef]

J. Sun, Z. Zuo, X. Mi, Z. Yu, Q. Jiang, Y. Wang, L.-A. Wu, and P. Fu, “Two-photon resonant four-wave mixing in a dressed atomic system,” Phys. Rev. A70, 053820 (2004).

[CrossRef]

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett.89, 143602 (2002).

[CrossRef]
[PubMed]

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A65, 033803 (2002).

[CrossRef]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A59, 4773–4776 (1999).

[CrossRef]

G. C. Cardoso, V. R. de Carvalho, S. S. Vianna, and J. W. R. Tabosa, “Population-grating transfer in cold cesium atoms,” Phys. Rev. A59, 1408–1412 (1999).

[CrossRef]

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A59, 4732–4735 (1999).

[CrossRef]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett.82, 1847–1850 (1999).

[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in rb vapor,” Phys. Rev. A57, 2996–3002 (1998).

[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).

[CrossRef]
[PubMed]

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).

[CrossRef]
[PubMed]

P. R. Hemmer, D. P. Katz, J. Donoghue, M. S. Shahriar, P. Kumar, and M. Cronin-Golomb, “Efficient low-intensity optical phase conjugation based on coherentpopulation trapping in sodium,” Opt. Lett.20, 982–984 (1995).

[CrossRef]

K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).

[CrossRef]
[PubMed]

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, “Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li,” J. Phys. B: At. Mol. Opt. Phys.40, 1117–1129 (2007).

[CrossRef]

A. M. Akulshin, A. Lezama, A. I. Sidorov, R. J. McLean, and P. Hannaford, “’storage of light’ in an atomic medium using electromagnetically induced absorption,” J. Phys. B: At. Mol. Opt. Phys.38, L365–L374 (2005).

[CrossRef]

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A59, 4732–4735 (1999).

[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in rb vapor,” Phys. Rev. A57, 2996–3002 (1998).

[CrossRef]

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett.89, 143602 (2002).

[CrossRef]
[PubMed]

C.-L. Cui, J.-H. Wu, J.-W. Gao, Y. Zhang, and N. Ba, “Double photonic bandgaps dynamically induced in a tripod system of cold atoms,” Opt. Express18, 4538–4546 (2010).

[CrossRef]
[PubMed]

J.-W. Gao, Y. Zhang, N. Ba, C.-L. Cui, and J.-H. Wu, “Dynamically induced double photonic bandgaps in the presence of spontaneously generated coherence,” Opt. Lett.35, 709–711 (2010).

[CrossRef]
[PubMed]

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A59, 4732–4735 (1999).

[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in rb vapor,” Phys. Rev. A57, 2996–3002 (1998).

[CrossRef]

K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).

[CrossRef]
[PubMed]

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A65, 033803 (2002).

[CrossRef]

G. C. Cardoso, V. R. de Carvalho, S. S. Vianna, and J. W. R. Tabosa, “Population-grating transfer in cold cesium atoms,” Phys. Rev. A59, 1408–1412 (1999).

[CrossRef]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A80, 055804 (2009).

[CrossRef]

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in an electromagnetically induced lattice,” Laser Phys. Lett.10, 055406 (2013).

[CrossRef]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-wave mixing dipole soliton in laser-induced atomic gratings,” Phys. Rev. Lett.106, 093904 (2011).

[CrossRef]
[PubMed]

J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett.98, 081108 (2011).

[CrossRef]

J.-W. Gao, Y. Zhang, N. Ba, C.-L. Cui, and J.-H. Wu, “Dynamically induced double photonic bandgaps in the presence of spontaneously generated coherence,” Opt. Lett.35, 709–711 (2010).

[CrossRef]
[PubMed]

C.-L. Cui, J.-H. Wu, J.-W. Gao, Y. Zhang, and N. Ba, “Double photonic bandgaps dynamically induced in a tripod system of cold atoms,” Opt. Express18, 4538–4546 (2010).

[CrossRef]
[PubMed]

G. C. Cardoso, V. R. de Carvalho, S. S. Vianna, and J. W. R. Tabosa, “Population-grating transfer in cold cesium atoms,” Phys. Rev. A59, 1408–1412 (1999).

[CrossRef]

J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett.98, 081108 (2011).

[CrossRef]

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, “Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li,” J. Phys. B: At. Mol. Opt. Phys.40, 1117–1129 (2007).

[CrossRef]

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett.110, 093901 (2013).

[CrossRef]
[PubMed]

Y. Zhang, X. Yao, C. Yuan, P. Li, J. Yuan, W. Feng, S. Jia, and Y. Zhang, “Controllable multiwave mixing Talbot effect,” IEEE Photon. J.4, 2057–2065 (2012).

[CrossRef]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett.82, 1847–1850 (1999).

[CrossRef]

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L.-A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+ 1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97, 193904 (2006).

[CrossRef]

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L.-A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+ 1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97, 193904 (2006).

[CrossRef]

J. Sun, Z. Zuo, X. Mi, Z. Yu, Q. Jiang, Y. Wang, L.-A. Wu, and P. Fu, “Two-photon resonant four-wave mixing in a dressed atomic system,” Phys. Rev. A70, 053820 (2004).

[CrossRef]

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, “Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li,” J. Phys. B: At. Mol. Opt. Phys.40, 1117–1129 (2007).

[CrossRef]

C.-L. Cui, J.-H. Wu, J.-W. Gao, Y. Zhang, and N. Ba, “Double photonic bandgaps dynamically induced in a tripod system of cold atoms,” Opt. Express18, 4538–4546 (2010).

[CrossRef]
[PubMed]

J.-W. Gao, Y. Zhang, N. Ba, C.-L. Cui, and J.-H. Wu, “Dynamically induced double photonic bandgaps in the presence of spontaneously generated coherence,” Opt. Lett.35, 709–711 (2010).

[CrossRef]
[PubMed]

R.-G. Wan, J. Kou, L. Jiang, Y. Jiang, and J.-Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).

[CrossRef]

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).

[CrossRef]
[PubMed]

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett.110, 093901 (2013).

[CrossRef]
[PubMed]

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, “Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li,” J. Phys. B: At. Mol. Opt. Phys.40, 1117–1129 (2007).

[CrossRef]

A. M. Akulshin, A. Lezama, A. I. Sidorov, R. J. McLean, and P. Hannaford, “’storage of light’ in an atomic medium using electromagnetically induced absorption,” J. Phys. B: At. Mol. Opt. Phys.38, L365–L374 (2005).

[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).

[CrossRef]
[PubMed]

K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).

[CrossRef]
[PubMed]

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A70, 061804 (2004).

[CrossRef]

K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).

[CrossRef]
[PubMed]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A59, 4773–4776 (1999).

[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).

[CrossRef]
[PubMed]

Y. Zhang, X. Yao, C. Yuan, P. Li, J. Yuan, W. Feng, S. Jia, and Y. Zhang, “Controllable multiwave mixing Talbot effect,” IEEE Photon. J.4, 2057–2065 (2012).

[CrossRef]

R.-G. Wan, J. Kou, L. Jiang, Y. Jiang, and J.-Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).

[CrossRef]

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L.-A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+ 1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97, 193904 (2006).

[CrossRef]

J. Sun, Z. Zuo, X. Mi, Z. Yu, Q. Jiang, Y. Wang, L.-A. Wu, and P. Fu, “Two-photon resonant four-wave mixing in a dressed atomic system,” Phys. Rev. A70, 053820 (2004).

[CrossRef]

R.-G. Wan, J. Kou, L. Jiang, Y. Jiang, and J.-Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).

[CrossRef]

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).

[CrossRef]
[PubMed]

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A70, 061804 (2004).

[CrossRef]

R.-G. Wan, J. Kou, L. Jiang, Y. Jiang, and J.-Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).

[CrossRef]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett.96, 073905 (2006).

[CrossRef]
[PubMed]

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, “Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li,” J. Phys. B: At. Mol. Opt. Phys.40, 1117–1129 (2007).

[CrossRef]

A. M. Akulshin, A. Lezama, A. I. Sidorov, R. J. McLean, and P. Hannaford, “’storage of light’ in an atomic medium using electromagnetically induced absorption,” J. Phys. B: At. Mol. Opt. Phys.38, L365–L374 (2005).

[CrossRef]

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A59, 4732–4735 (1999).

[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in rb vapor,” Phys. Rev. A57, 2996–3002 (1998).

[CrossRef]

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in an electromagnetically induced lattice,” Laser Phys. Lett.10, 055406 (2013).

[CrossRef]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-wave mixing dipole soliton in laser-induced atomic gratings,” Phys. Rev. Lett.106, 093904 (2011).

[CrossRef]
[PubMed]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A80, 055804 (2009).

[CrossRef]

Y. Zhang, X. Yao, C. Yuan, P. Li, J. Yuan, W. Feng, S. Jia, and Y. Zhang, “Controllable multiwave mixing Talbot effect,” IEEE Photon. J.4, 2057–2065 (2012).

[CrossRef]

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).

[CrossRef]
[PubMed]

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L.-A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+ 1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97, 193904 (2006).

[CrossRef]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-wave mixing dipole soliton in laser-induced atomic gratings,” Phys. Rev. Lett.106, 093904 (2011).

[CrossRef]
[PubMed]

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett.89, 143602 (2002).

[CrossRef]
[PubMed]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett.82, 1847–1850 (1999).

[CrossRef]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett.82, 1847–1850 (1999).

[CrossRef]

A. M. Akulshin, A. Lezama, A. I. Sidorov, R. J. McLean, and P. Hannaford, “’storage of light’ in an atomic medium using electromagnetically induced absorption,” J. Phys. B: At. Mol. Opt. Phys.38, L365–L374 (2005).

[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).

[CrossRef]
[PubMed]

J. Sun, Z. Zuo, X. Mi, Z. Yu, Q. Jiang, Y. Wang, L.-A. Wu, and P. Fu, “Two-photon resonant four-wave mixing in a dressed atomic system,” Phys. Rev. A70, 053820 (2004).

[CrossRef]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A59, 4773–4776 (1999).

[CrossRef]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-wave mixing dipole soliton in laser-induced atomic gratings,” Phys. Rev. Lett.106, 093904 (2011).

[CrossRef]
[PubMed]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A80, 055804 (2009).

[CrossRef]

D. Petrosyan, “Tunable photonic band gaps with coherently driven atoms in optical lattices,” Phys. Rev. A76, 053823 (2007).

[CrossRef]

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, “Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li,” J. Phys. B: At. Mol. Opt. Phys.40, 1117–1129 (2007).

[CrossRef]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett.82, 1847–1850 (1999).

[CrossRef]

A. M. Akulshin, A. Lezama, A. I. Sidorov, R. J. McLean, and P. Hannaford, “’storage of light’ in an atomic medium using electromagnetically induced absorption,” J. Phys. B: At. Mol. Opt. Phys.38, L365–L374 (2005).

[CrossRef]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A80, 055804 (2009).

[CrossRef]

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L.-A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+ 1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97, 193904 (2006).

[CrossRef]

J. Sun, Z. Zuo, X. Mi, Z. Yu, Q. Jiang, Y. Wang, L.-A. Wu, and P. Fu, “Two-photon resonant four-wave mixing in a dressed atomic system,” Phys. Rev. A70, 053820 (2004).

[CrossRef]

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A65, 033803 (2002).

[CrossRef]

G. C. Cardoso, V. R. de Carvalho, S. S. Vianna, and J. W. R. Tabosa, “Population-grating transfer in cold cesium atoms,” Phys. Rev. A59, 1408–1412 (1999).

[CrossRef]

G. C. Cardoso, V. R. de Carvalho, S. S. Vianna, and J. W. R. Tabosa, “Population-grating transfer in cold cesium atoms,” Phys. Rev. A59, 1408–1412 (1999).

[CrossRef]

R.-G. Wan, J. Kou, L. Jiang, Y. Jiang, and J.-Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).

[CrossRef]

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett.110, 093901 (2013).

[CrossRef]
[PubMed]

J. Sun, Z. Zuo, X. Mi, Z. Yu, Q. Jiang, Y. Wang, L.-A. Wu, and P. Fu, “Two-photon resonant four-wave mixing in a dressed atomic system,” Phys. Rev. A70, 053820 (2004).

[CrossRef]

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in an electromagnetically induced lattice,” Laser Phys. Lett.10, 055406 (2013).

[CrossRef]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-wave mixing dipole soliton in laser-induced atomic gratings,” Phys. Rev. Lett.106, 093904 (2011).

[CrossRef]
[PubMed]

J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett.98, 081108 (2011).

[CrossRef]

J.-W. Gao, Y. Zhang, N. Ba, C.-L. Cui, and J.-H. Wu, “Dynamically induced double photonic bandgaps in the presence of spontaneously generated coherence,” Opt. Lett.35, 709–711 (2010).

[CrossRef]
[PubMed]

C.-L. Cui, J.-H. Wu, J.-W. Gao, Y. Zhang, and N. Ba, “Double photonic bandgaps dynamically induced in a tripod system of cold atoms,” Opt. Express18, 4538–4546 (2010).

[CrossRef]
[PubMed]

J.-H. Wu, M. Artoni, and G. C. L. Rocca, “Controlling the photonic band structure of optically driven cold atoms,” J. Opt. Soc. Am. B25, 1840–1849 (2008).

[CrossRef]

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L.-A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+ 1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97, 193904 (2006).

[CrossRef]

J. Sun, Z. Zuo, X. Mi, Z. Yu, Q. Jiang, Y. Wang, L.-A. Wu, and P. Fu, “Two-photon resonant four-wave mixing in a dressed atomic system,” Phys. Rev. A70, 053820 (2004).

[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).

[CrossRef]
[PubMed]

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in an electromagnetically induced lattice,” Laser Phys. Lett.10, 055406 (2013).

[CrossRef]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-wave mixing dipole soliton in laser-induced atomic gratings,” Phys. Rev. Lett.106, 093904 (2011).

[CrossRef]
[PubMed]

J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett.98, 081108 (2011).

[CrossRef]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A80, 055804 (2009).

[CrossRef]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99, 123603 (2007).

[CrossRef]
[PubMed]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett.30, 699–701 (2005).

[CrossRef]
[PubMed]

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).

[CrossRef]
[PubMed]

Y. Zhang, X. Yao, C. Yuan, P. Li, J. Yuan, W. Feng, S. Jia, and Y. Zhang, “Controllable multiwave mixing Talbot effect,” IEEE Photon. J.4, 2057–2065 (2012).

[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).

[CrossRef]
[PubMed]

J. Sun, Z. Zuo, X. Mi, Z. Yu, Q. Jiang, Y. Wang, L.-A. Wu, and P. Fu, “Two-photon resonant four-wave mixing in a dressed atomic system,” Phys. Rev. A70, 053820 (2004).

[CrossRef]

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in an electromagnetically induced lattice,” Laser Phys. Lett.10, 055406 (2013).

[CrossRef]

Y. Zhang, X. Yao, C. Yuan, P. Li, J. Yuan, W. Feng, S. Jia, and Y. Zhang, “Controllable multiwave mixing Talbot effect,” IEEE Photon. J.4, 2057–2065 (2012).

[CrossRef]

Y. Zhang, X. Yao, C. Yuan, P. Li, J. Yuan, W. Feng, S. Jia, and Y. Zhang, “Controllable multiwave mixing Talbot effect,” IEEE Photon. J.4, 2057–2065 (2012).

[CrossRef]

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett.110, 093901 (2013).

[CrossRef]
[PubMed]

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in an electromagnetically induced lattice,” Laser Phys. Lett.10, 055406 (2013).

[CrossRef]

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in an electromagnetically induced lattice,” Laser Phys. Lett.10, 055406 (2013).

[CrossRef]

Y. Zhang, X. Yao, C. Yuan, P. Li, J. Yuan, W. Feng, S. Jia, and Y. Zhang, “Controllable multiwave mixing Talbot effect,” IEEE Photon. J.4, 2057–2065 (2012).

[CrossRef]

Y. Zhang, X. Yao, C. Yuan, P. Li, J. Yuan, W. Feng, S. Jia, and Y. Zhang, “Controllable multiwave mixing Talbot effect,” IEEE Photon. J.4, 2057–2065 (2012).

[CrossRef]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-wave mixing dipole soliton in laser-induced atomic gratings,” Phys. Rev. Lett.106, 093904 (2011).

[CrossRef]
[PubMed]

C.-L. Cui, J.-H. Wu, J.-W. Gao, Y. Zhang, and N. Ba, “Double photonic bandgaps dynamically induced in a tripod system of cold atoms,” Opt. Express18, 4538–4546 (2010).

[CrossRef]
[PubMed]

J.-W. Gao, Y. Zhang, N. Ba, C.-L. Cui, and J.-H. Wu, “Dynamically induced double photonic bandgaps in the presence of spontaneously generated coherence,” Opt. Lett.35, 709–711 (2010).

[CrossRef]
[PubMed]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A80, 055804 (2009).

[CrossRef]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99, 123603 (2007).

[CrossRef]
[PubMed]

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in an electromagnetically induced lattice,” Laser Phys. Lett.10, 055406 (2013).

[CrossRef]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A80, 055804 (2009).

[CrossRef]

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett.110, 093901 (2013).

[CrossRef]
[PubMed]

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett.110, 093901 (2013).

[CrossRef]
[PubMed]

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A70, 061804 (2004).

[CrossRef]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A80, 055804 (2009).

[CrossRef]

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L.-A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+ 1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97, 193904 (2006).

[CrossRef]

J. Sun, Z. Zuo, X. Mi, Z. Yu, Q. Jiang, Y. Wang, L.-A. Wu, and P. Fu, “Two-photon resonant four-wave mixing in a dressed atomic system,” Phys. Rev. A70, 053820 (2004).

[CrossRef]

J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett.98, 081108 (2011).

[CrossRef]

Y. Zhang, X. Yao, C. Yuan, P. Li, J. Yuan, W. Feng, S. Jia, and Y. Zhang, “Controllable multiwave mixing Talbot effect,” IEEE Photon. J.4, 2057–2065 (2012).

[CrossRef]

A. M. Akulshin, A. Lezama, A. I. Sidorov, R. J. McLean, and P. Hannaford, “’storage of light’ in an atomic medium using electromagnetically induced absorption,” J. Phys. B: At. Mol. Opt. Phys.38, L365–L374 (2005).

[CrossRef]

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, “Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li,” J. Phys. B: At. Mol. Opt. Phys.40, 1117–1129 (2007).

[CrossRef]

Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, “Surface solitons of four-wave mixing in an electromagnetically induced lattice,” Laser Phys. Lett.10, 055406 (2013).

[CrossRef]

J.-W. Gao, Y. Zhang, N. Ba, C.-L. Cui, and J.-H. Wu, “Dynamically induced double photonic bandgaps in the presence of spontaneously generated coherence,” Opt. Lett.35, 709–711 (2010).

[CrossRef]
[PubMed]

P. R. Hemmer, D. P. Katz, J. Donoghue, M. S. Shahriar, P. Kumar, and M. Cronin-Golomb, “Efficient low-intensity optical phase conjugation based on coherentpopulation trapping in sodium,” Opt. Lett.20, 982–984 (1995).

[CrossRef]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett.30, 699–701 (2005).

[CrossRef]
[PubMed]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A80, 055804 (2009).

[CrossRef]

J. Sun, Z. Zuo, X. Mi, Z. Yu, Q. Jiang, Y. Wang, L.-A. Wu, and P. Fu, “Two-photon resonant four-wave mixing in a dressed atomic system,” Phys. Rev. A70, 053820 (2004).

[CrossRef]

R.-G. Wan, J. Kou, L. Jiang, Y. Jiang, and J.-Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).

[CrossRef]

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).

[CrossRef]
[PubMed]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in rb vapor,” Phys. Rev. A57, 2996–3002 (1998).

[CrossRef]

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A59, 4732–4735 (1999).

[CrossRef]

D. Petrosyan, “Tunable photonic band gaps with coherently driven atoms in optical lattices,” Phys. Rev. A76, 053823 (2007).

[CrossRef]

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A70, 061804 (2004).

[CrossRef]

G. C. Cardoso, V. R. de Carvalho, S. S. Vianna, and J. W. R. Tabosa, “Population-grating transfer in cold cesium atoms,” Phys. Rev. A59, 1408–1412 (1999).

[CrossRef]

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A65, 033803 (2002).

[CrossRef]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A59, 4773–4776 (1999).

[CrossRef]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-wave mixing dipole soliton in laser-induced atomic gratings,” Phys. Rev. Lett.106, 093904 (2011).

[CrossRef]
[PubMed]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett.82, 1847–1850 (1999).

[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).

[CrossRef]
[PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99, 123603 (2007).

[CrossRef]
[PubMed]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett.96, 073905 (2006).

[CrossRef]
[PubMed]

D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett.110, 093901 (2013).

[CrossRef]
[PubMed]

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett.89, 143602 (2002).

[CrossRef]
[PubMed]

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L.-A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+ 1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97, 193904 (2006).

[CrossRef]

K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).

[CrossRef]
[PubMed]

D. A. Steck, “Alkali D line data,” available online at http://steck.us/alkalidata .