Abstract

An optically anisotropic microlens array film directly formed on a single substrate is demonstrated. UV curable diacrylate monomers are coated as a film on the substrate. Under the action of fringing field, not only the film surface is flattened by the generated dielectric force but also the monomers are reoriented to form a gradient refractive index (GRIN) distribution in the film. Via UV exposure, the GRIN distribution is fixed and the polymeric film behaves as a microlens array. The fabrication process is simple and the film offers a switchable focus through controlling the polarization direction of the incident light. Integrating with a 90° twisted-nematic liquid crystal cell, our polymeric microlens array film shows great potential for switchable 2D/3D autostereoscopic displays.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays: characterization and enhancement,” Proc. SPIE3957, 153–164 (2000).
    [CrossRef]
  2. H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express13(21), 8424–8432 (2005).
    [CrossRef] [PubMed]
  3. T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE6135, 61350K (2006).
    [CrossRef]
  4. J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereoscopic display,” Proc. SPIE6490, 64900M (2007).
    [CrossRef]
  5. M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” SID J.18(8), 847–855 (2008).
  6. R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
    [CrossRef]
  7. A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
    [CrossRef]
  8. C. W. Chen, Y. C. Huang, Y. P. Huang, and J. F. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Symp. Dig. 41, 428–431 (2010).
    [CrossRef]
  9. J. Hong, Y. Kim, S. G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express18(20), 20628–20637 (2010).
    [CrossRef] [PubMed]
  10. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt.50(34), H87–H115 (2011).
    [CrossRef] [PubMed]
  11. Y.-K. Lai, Y.-F. Lai, and Y.-C. Chen, “An effective hybrid depth-generation algorithm for 2D-to-3D conversion in 3D displays,” J. Disp. Technol.9(3), 154–161 (2013).
    [CrossRef]
  12. Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012).
    [CrossRef]
  13. J.-H. Na, S.-C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express20(2), 864–869 (2012).
    [CrossRef] [PubMed]
  14. J. Sun, R. A. Ramsey, Y. Chen, and S. T. Wu, “Submillisecond-response sheared polymer network liquid crystals for display applications,” J. Disp. Technol.8(2), 87–90 (2012).
    [CrossRef]
  15. V. Presnyakov, K. E. Asatryan, T. V. Galstian, and A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express10(17), 865–870 (2002).
    [CrossRef] [PubMed]
  16. J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett.102(16), 161106 (2013).
    [CrossRef]
  17. H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express21(7), 7916–7925 (2013).
    [CrossRef] [PubMed]
  18. P. Penfield and H. A. Haus, Electrodynamics of Moving Media (MIT, Cambridge, 1967).
  19. C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express14(9), 4101–4106 (2006).
    [CrossRef] [PubMed]
  20. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A33(2), 1270–1274 (1986).
    [CrossRef] [PubMed]
  21. E. Lueder, 3D Displays (Wiley, New York, 2012).
  22. Q. H. Wang, X. F. Li, L. Zhou, A. H. Wang, and D. H. Li, “Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet,” Appl. Opt.50(7), B1–B5 (2011).
    [CrossRef] [PubMed]

2013 (3)

Y.-K. Lai, Y.-F. Lai, and Y.-C. Chen, “An effective hybrid depth-generation algorithm for 2D-to-3D conversion in 3D displays,” J. Disp. Technol.9(3), 154–161 (2013).
[CrossRef]

J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett.102(16), 161106 (2013).
[CrossRef]

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express21(7), 7916–7925 (2013).
[CrossRef] [PubMed]

2012 (3)

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012).
[CrossRef]

J.-H. Na, S.-C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express20(2), 864–869 (2012).
[CrossRef] [PubMed]

J. Sun, R. A. Ramsey, Y. Chen, and S. T. Wu, “Submillisecond-response sheared polymer network liquid crystals for display applications,” J. Disp. Technol.8(2), 87–90 (2012).
[CrossRef]

2011 (2)

2010 (1)

2009 (1)

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

2008 (1)

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” SID J.18(8), 847–855 (2008).

2007 (1)

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereoscopic display,” Proc. SPIE6490, 64900M (2007).
[CrossRef]

2006 (2)

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE6135, 61350K (2006).
[CrossRef]

C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express14(9), 4101–4106 (2006).
[CrossRef] [PubMed]

2005 (1)

2002 (1)

2000 (1)

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays: characterization and enhancement,” Proc. SPIE3957, 153–164 (2000).
[CrossRef]

1986 (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A33(2), 1270–1274 (1986).
[CrossRef] [PubMed]

Asatryan, K. E.

Chang, C. A.

Chen, C. W.

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012).
[CrossRef]

C. W. Chen, Y. C. Huang, Y. P. Huang, and J. F. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Symp. Dig. 41, 428–431 (2010).
[CrossRef]

Chen, N.

Chen, Y.

J. Sun, R. A. Ramsey, Y. Chen, and S. T. Wu, “Submillisecond-response sheared polymer network liquid crystals for display applications,” J. Disp. Technol.8(2), 87–90 (2012).
[CrossRef]

Chen, Y.-C.

Y.-K. Lai, Y.-F. Lai, and Y.-C. Chen, “An effective hybrid depth-generation algorithm for 2D-to-3D conversion in 3D displays,” J. Disp. Technol.9(3), 154–161 (2013).
[CrossRef]

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

Cheng, C.-C.

Cho, S.-W.

Choi, H.

Choi, H.-J.

Choi, Y.

de Boer, D. K. G.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” SID J.18(8), 847–855 (2008).

de Zwart, S. T.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” SID J.18(8), 847–855 (2008).

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE6135, 61350K (2006).
[CrossRef]

Dekker, T.

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE6135, 61350K (2006).
[CrossRef]

Ezra, D.

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays: characterization and enhancement,” Proc. SPIE3957, 153–164 (2000).
[CrossRef]

Flack, J.

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereoscopic display,” Proc. SPIE6490, 64900M (2007).
[CrossRef]

Galstian, T. V.

Hahn, J.

Harrold, J.

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereoscopic display,” Proc. SPIE6490, 64900M (2007).
[CrossRef]

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays: characterization and enhancement,” Proc. SPIE3957, 153–164 (2000).
[CrossRef]

Hiddink, M. G. H.

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE6135, 61350K (2006).
[CrossRef]

Hirayama, Y.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
[CrossRef]

Hong, J.

Hong, J.-H.

Hsu, W.-L.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

Huang, J. F.

C. W. Chen, Y. C. Huang, Y. P. Huang, and J. F. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Symp. Dig. 41, 428–431 (2010).
[CrossRef]

Huang, K.-C.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

Huang, Y. C.

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012).
[CrossRef]

C. W. Chen, Y. C. Huang, Y. P. Huang, and J. F. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Symp. Dig. 41, 428–431 (2010).
[CrossRef]

Huang, Y. P.

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012).
[CrossRef]

C. W. Chen, Y. C. Huang, Y. P. Huang, and J. F. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Symp. Dig. 41, 428–431 (2010).
[CrossRef]

IJzerman, W. L.

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE6135, 61350K (2006).
[CrossRef]

Jacobs, A. M. S.

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays: characterization and enhancement,” Proc. SPIE3957, 153–164 (2000).
[CrossRef]

Kashiwagi, M.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
[CrossRef]

Kim, H.

Kim, J.

Kim, S.-U.

Kim, Y.

Krijn, M. P. C. M.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” SID J.18(8), 847–855 (2008).

Lai, Y.-F.

Y.-K. Lai, Y.-F. Lai, and Y.-C. Chen, “An effective hybrid depth-generation algorithm for 2D-to-3D conversion in 3D displays,” J. Disp. Technol.9(3), 154–161 (2013).
[CrossRef]

Lai, Y.-K.

Y.-K. Lai, Y.-F. Lai, and Y.-C. Chen, “An effective hybrid depth-generation algorithm for 2D-to-3D conversion in 3D displays,” J. Disp. Technol.9(3), 154–161 (2013).
[CrossRef]

Lee, B.

Lee, K.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

Lee, S.-D.

Li, D. H.

Li, X. F.

Lin, L.-C. D.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

Liu, Y.

Lu, C.-F.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

Min, S.-W.

Moseley, R. R.

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays: characterization and enhancement,” Proc. SPIE3957, 153–164 (2000).
[CrossRef]

Na, J.-H.

Park, J.-H.

Park, S. G.

Park, S.-C.

Presnyakov, V.

Ramsey, R. A.

J. Sun, R. A. Ramsey, Y. Chen, and S. T. Wu, “Submillisecond-response sheared polymer network liquid crystals for display applications,” J. Disp. Technol.8(2), 87–90 (2012).
[CrossRef]

Ren, H.

J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett.102(16), 161106 (2013).
[CrossRef]

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express21(7), 7916–7925 (2013).
[CrossRef] [PubMed]

Saishu, T.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
[CrossRef]

Sluijter, M.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” SID J.18(8), 847–855 (2008).

Sun, J.

J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett.102(16), 161106 (2013).
[CrossRef]

J. Sun, R. A. Ramsey, Y. Chen, and S. T. Wu, “Submillisecond-response sheared polymer network liquid crystals for display applications,” J. Disp. Technol.8(2), 87–90 (2012).
[CrossRef]

Taira, K.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
[CrossRef]

Takagi, A.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
[CrossRef]

Tork, A.

Tsai, C.-H.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

Tsai, R.-Y.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

Wang, A. H.

Wang, Q. H.

Willemsen, O. H.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” SID J.18(8), 847–855 (2008).

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE6135, 61350K (2006).
[CrossRef]

Woodgate, G. J.

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays: characterization and enhancement,” Proc. SPIE3957, 153–164 (2000).
[CrossRef]

Woodgate, J.

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereoscopic display,” Proc. SPIE6490, 64900M (2007).
[CrossRef]

Wu, C.-L.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

Wu, C.-S.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

Wu, S. T.

J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett.102(16), 161106 (2013).
[CrossRef]

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express21(7), 7916–7925 (2013).
[CrossRef] [PubMed]

J. Sun, R. A. Ramsey, Y. Chen, and S. T. Wu, “Submillisecond-response sheared polymer network liquid crystals for display applications,” J. Disp. Technol.8(2), 87–90 (2012).
[CrossRef]

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A33(2), 1270–1274 (1986).
[CrossRef] [PubMed]

Xu, S.

J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett.102(16), 161106 (2013).
[CrossRef]

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express21(7), 7916–7925 (2013).
[CrossRef] [PubMed]

Yang, J.-C.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

Yeh, J. A.

Zhou, L.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett.102(16), 161106 (2013).
[CrossRef]

J. Disp. Technol. (3)

J. Sun, R. A. Ramsey, Y. Chen, and S. T. Wu, “Submillisecond-response sheared polymer network liquid crystals for display applications,” J. Disp. Technol.8(2), 87–90 (2012).
[CrossRef]

Y.-K. Lai, Y.-F. Lai, and Y.-C. Chen, “An effective hybrid depth-generation algorithm for 2D-to-3D conversion in 3D displays,” J. Disp. Technol.9(3), 154–161 (2013).
[CrossRef]

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012).
[CrossRef]

Opt. Express (6)

Phys. Rev. A (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A33(2), 1270–1274 (1986).
[CrossRef] [PubMed]

Proc. SPIE (4)

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays: characterization and enhancement,” Proc. SPIE3957, 153–164 (2000).
[CrossRef]

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009).
[CrossRef]

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE6135, 61350K (2006).
[CrossRef]

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereoscopic display,” Proc. SPIE6490, 64900M (2007).
[CrossRef]

SID J. (1)

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” SID J.18(8), 847–855 (2008).

Other (4)

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
[CrossRef]

C. W. Chen, Y. C. Huang, Y. P. Huang, and J. F. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Symp. Dig. 41, 428–431 (2010).
[CrossRef]

P. Penfield and H. A. Haus, Electrodynamics of Moving Media (MIT, Cambridge, 1967).

E. Lueder, 3D Displays (Wiley, New York, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) A glass substrate with interdigitated ITO electrodes. The coated PI on the ITO surface is rubbed in the direction perpendicular to the electrode stripes, and the calculated electric field distribution (b) Ex and (c) Ez. The height along z-axis and the ITO width are not drawn to scale.

Fig. 2
Fig. 2

(a) Dripping an LC droplet on a substrate surface, (b) spreading the droplet to form a thin film with a blade, and (c) applying a voltage to the electrode, and (d) calculated LC reorientation inside the film. The film thickness and the ITO width are not drawn to scale.

Fig. 3
Fig. 3

Fabrication procedures of a polymeric microlens array film. (a) Fringing field induced diacrylate monomers reorientation and the film surface flattening, (b) UV curing during applied voltage, and (c) polymerizing the monomers and fixing the reoriented monomers.

Fig. 4
Fig. 4

Stripe patterns of the film (IPS-5/5 substrate) observed using a POM. The film is sandwiched between crossed polarizer and analyzer. The rubbing direction of the substrate is orientated at (a) 45° and (b) 0° to the optic axis of the polarizer.

Fig. 5
Fig. 5

2D image of the solidified film (IPS-5/5 substrate) when focused on: (a) film surface and (b) focal plane. The analyzer is removed and the rubbing direction of the substrate is along the optic axis of the polarizer.

Fig. 6
Fig. 6

Film textures observed on the IPS-8/12 substrate: (a) V = 50 Vrm to the fluidic film, (b) V = 65 Vrms to the fluidic film, (c) solidified after applying 80 Vrms, (d) magnified image of (c), (e) focusing state, and (d) non-focusing state.

Fig. 7
Fig. 7

SEM images of the polymeric film: (a) surface morphology and (b) cross-sectional morphology.

Fig. 8
Fig. 8

Switchable focus using a polymeric microlens combined with a TNLC cell: (a) experimental setup, (b) no focusing in the voltage-off state, (c) CCD image and intensity profiles of the non-focusing state, (d) focusing in the voltage-on state, and (e) CCD image and intensity profiles of the focusing state.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = 1 2 ε 0 ( ε L C ε a i r ) E 2 ,

Metrics