Abstract

Techniques are widely sought to detect and identify sea mines. This issue is characterized by complicated mine shapes and underwater light propagation dependencies. In a preliminary study we use a preprocessing step for denoising underwater images before applying the algorithm for mine detection. Once a mine is detected, the protocol for identifying it is activated. Among many correlation filters, we have focused our attention on the asymmetric segmented phase-only filter for quantifying the recognition rate because it allows us to significantly increase the number of reference images in the fabrication of this filter. Yet they are not entirely satisfactory in terms of recognition rate and the obtained images revealed to be of low quality. In this report, we propose a way to improve upon this preliminary study by using a single wavelength polarimetric camera in order to denoise the images. This permits us to enhance images and improve depth visibility. We present illustrative results using in situ polarization imaging of a target through a milk-water mixture and demonstrate that our challenging objective of increasing the detection rate and decreasing the false alarm rate has been achieved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Barat and R. Phlypo, “A fully automated method to detect and segment a manufactured object in an underwater color image,” EURASIP J. Adv. Signal Process.2010, 1–11 (2010).
    [CrossRef]
  2. I. Leonard, “Reconnaissance des objets manufacturés dans des vidéos sous-marines,” Ph. D. thesis, Université de Bretagne Occidentale, (2012).
  3. R. C. Duncan, America’s use of sea mines, White Oak: United States Naval Ordinance Laboratory, 1962.
  4. H. S. Levie, Mine Warfare at Sea (Martinus Nijhoff Publishers, Dordrecht, 1992).
  5. G. K. Hartmann and S. Truver, Weapons that wait: mine warfare in the United States Navy (Naval Institute Press, Annapolis, 1991).
  6. A. Alfalou and C. Brosseau, “Understanding correlation techniques for face recognition: from basics to applications,” in Face Recognition, Milos Oravec (Ed.), ISBN: 978–953–307–060–5, In-Tech (2010).
  7. I. Leonard, A. Arnold-Bos, and A. Alfalou, “Interest of correlation-based automatic target recognition in underwater optical images: theoretical justification and first results,” in Proc. SPIE, 7678, 2010.
    [CrossRef]
  8. I. Leonard, A. Alfalou, and C. Brosseau, “Spectral optimized asymmetric segmented phase-only correlation filter,” Appl. Opt.51(14), 2638–2650 (2012).
    [CrossRef] [PubMed]
  9. B. McGlamery, “Computer analysis and simulation of underwater camera system performance,” University of California, San Diego, Scripps Institution of Oceanography, Visibility Laboratory, Technical Report (1975).
  10. A. Morel, “Etude expérimentale de la diffusion de la lumière dans l’eau, les solutions de chlorure de sodium et l’eau de mer optiquement pures,” J. Chem. Phys.10, 1359–1366 (1966).
  11. A. Morel, “Note au sujet des constantes de diffusion de la lumière pour l’eau et l’eau de mer optiquement pures,” Cah. Oceanogr.20, 157–162 (1968).
  12. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908).
    [CrossRef]
  13. X. Zhang and L. Hu, “Scattering by pure seawater at high salinity,” Opt. Express17(15), 12685–12691 (2009).
    [CrossRef] [PubMed]
  14. T. D. Dickey, G. W. Kattawar, and K. J. Voss, “Shedding new light on light in the ocean,” Phys. Today64(4), 44–49 (2011).
    [CrossRef]
  15. G. W. Kattawar, “Genesis and evolution of polarization of light in the ocean [invited],” Appl. Opt.52(5), 940–948 (2013).
    [CrossRef] [PubMed]
  16. A. Arnold-Bos, J. Malkasse, and G. Kervern, “Towards a model-free denoising of underwater optical images,” in Proceedings of the IEEE Conference on Ocean (Europe), 2005.
    [CrossRef]
  17. I. Leonard, A. Arnold-Bos, A. Alfalou, and N. Mandelert, “Improvement of automatic man-made object detection in underwater videos by use of navigational information,” in ICoURS'12, October 2012.
  18. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory10(2), 139–145 (1964).
    [CrossRef]
  19. B. V. Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt.31(23), 4773–4801 (1992).
    [CrossRef] [PubMed]
  20. J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt.23(6), 812–816 (1984).
    [CrossRef] [PubMed]
  21. I. Leonard, A. Alfalou, and C. Brosseau, “Face recognition: based on composite correlation filters: analysis of their performances,” in Face Recognition: Methods, Applications and Technology, A. Quaglia and C. M. Epifano (eds.), Nova Science Publishers, Chap. 3, pp. 57–80 (2012).
  22. J. L. Horner, “Metrics for assessing pattern-recognition performance,” Appl. Opt.31(2), 165–166 (1992).
    [CrossRef] [PubMed]
  23. S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Underwater polarization A physical examination,” Recent Res. Devel. Experimental Theoretical Biol.1, 1–54 (2005).
  24. P. C. Y. Chang, J. C. Flitton, K. I. Hopcraft, E. Jakeman, D. L. Jordan, and J. G. Walker, “Improving visibility depth in passive underwater imaging by use of polarization,” Appl. Opt.42(15), 2794–2803 (2003).
    [CrossRef] [PubMed]
  25. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  26. L. Bartolini, L. De Dominicis, M. Ferride Collibus, G. Fornetti, M. Francucci, M. Guarneri, E. Paglia, C. Poggi, and R. Ricci, “Polarimetry as tool to improve phase measurement in an amplitude modulated laser for submarine archaeological sites inspection,” in Proc. of SPIE, Vol. 6618, 66180I, 2007.
    [CrossRef]
  27. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
    [CrossRef] [PubMed]
  28. L. F. Rochas-Ochoa, D. Lacoste, R. Lenke, and P. Schurtenberger, andsF. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A21(9), 1799–1804 (2004).
    [CrossRef]
  29. http://www.sealife-cameras.com/fr/cam%C3%A9ras/dc1400-pro-vid%C3%A9o
  30. Y. Piederrière, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, and G. Le Brun, “Backscattered speckle size as a function of polarization: influence of particle-size and- concentration,” Opt. Express13(13), 5030–5039 (2005).
    [CrossRef] [PubMed]
  31. M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt.52(5), 997–1005 (2013).
    [CrossRef] [PubMed]
  32. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt.35(11), 1855–1870 (1996).
    [CrossRef] [PubMed]
  33. D. J. Bogucki, J. A. Domaradzki, D. Stramski, and J. R. Zaneveld, “Comparison of near-forward light scattering on oceanic turbulence and particles,” Appl. Opt.37(21), 4669–4677 (1998).
    [CrossRef] [PubMed]
  34. M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt.48(8), 1610–1618 (2009).
    [CrossRef] [PubMed]

2013

2012

2011

T. D. Dickey, G. W. Kattawar, and K. J. Voss, “Shedding new light on light in the ocean,” Phys. Today64(4), 44–49 (2011).
[CrossRef]

2010

C. Barat and R. Phlypo, “A fully automated method to detect and segment a manufactured object in an underwater color image,” EURASIP J. Adv. Signal Process.2010, 1–11 (2010).
[CrossRef]

2009

2005

S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Underwater polarization A physical examination,” Recent Res. Devel. Experimental Theoretical Biol.1, 1–54 (2005).

Y. Piederrière, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, and G. Le Brun, “Backscattered speckle size as a function of polarization: influence of particle-size and- concentration,” Opt. Express13(13), 5030–5039 (2005).
[CrossRef] [PubMed]

2004

2003

1998

1996

1994

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

1992

1984

1968

A. Morel, “Note au sujet des constantes de diffusion de la lumière pour l’eau et l’eau de mer optiquement pures,” Cah. Oceanogr.20, 157–162 (1968).

1966

A. Morel, “Etude expérimentale de la diffusion de la lumière dans l’eau, les solutions de chlorure de sodium et l’eau de mer optiquement pures,” J. Chem. Phys.10, 1359–1366 (1966).

1964

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory10(2), 139–145 (1964).
[CrossRef]

1908

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Alfalou, A.

Alouini, M.

Arnold-Bos, A.

I. Leonard, A. Arnold-Bos, and A. Alfalou, “Interest of correlation-based automatic target recognition in underwater optical images: theoretical justification and first results,” in Proc. SPIE, 7678, 2010.
[CrossRef]

Baarstad, I.

Barat, C.

C. Barat and R. Phlypo, “A fully automated method to detect and segment a manufactured object in an underwater color image,” EURASIP J. Adv. Signal Process.2010, 1–11 (2010).
[CrossRef]

Bénière, A.

Berginc, G.

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Bogucki, D. J.

Boulvert, F.

Bourderionnet, J.

Brosseau, C.

Cariou, J.

Chang, P. C. Y.

Delrot, P.

Dickey, T. D.

T. D. Dickey, G. W. Kattawar, and K. J. Voss, “Shedding new light on light in the ocean,” Phys. Today64(4), 44–49 (2011).
[CrossRef]

Dogariu, A.

Dolfi, D.

Domaradzki, J. A.

Dubreuil, M.

Engheta, N.

Erlick, C.

S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Underwater polarization A physical examination,” Recent Res. Devel. Experimental Theoretical Biol.1, 1–54 (2005).

Flitton, J. C.

Gianino, P. D.

Goudail, F.

Grisard, A.

Guern, Y.

Hopcraft, K. I.

Horner, J. L.

Hu, L.

Jakeman, E.

Jordan, D. L.

Kaspersen, P.

Kattawar, G. W.

G. W. Kattawar, “Genesis and evolution of polarization of light in the ocean [invited],” Appl. Opt.52(5), 940–948 (2013).
[CrossRef] [PubMed]

T. D. Dickey, G. W. Kattawar, and K. J. Voss, “Shedding new light on light in the ocean,” Phys. Today64(4), 44–49 (2011).
[CrossRef]

Kumar, B. V.

Lacoste, D.

Le Brun, G.

Le Jeune, B.

Lenke, R.

Leonard, I.

Lerner, A.

S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Underwater polarization A physical examination,” Recent Res. Devel. Experimental Theoretical Biol.1, 1–54 (2005).

Løke, T.

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Morel, A.

A. Morel, “Note au sujet des constantes de diffusion de la lumière pour l’eau et l’eau de mer optiquement pures,” Cah. Oceanogr.20, 157–162 (1968).

A. Morel, “Etude expérimentale de la diffusion de la lumière dans l’eau, les solutions de chlorure de sodium et l’eau de mer optiquement pures,” J. Chem. Phys.10, 1359–1366 (1966).

Normandin, X.

Phlypo, R.

C. Barat and R. Phlypo, “A fully automated method to detect and segment a manufactured object in an underwater color image,” EURASIP J. Adv. Signal Process.2010, 1–11 (2010).
[CrossRef]

Piederrière, Y.

Pugh, E. N.

Rochas-Ochoa, L. F.

Rowe, M. P.

Sabbah, S.

S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Underwater polarization A physical examination,” Recent Res. Devel. Experimental Theoretical Biol.1, 1–54 (2005).

Scheffold, F.

Schmitt, J. M.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Schurtenberger, P.

Shashar, N.

S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Underwater polarization A physical examination,” Recent Res. Devel. Experimental Theoretical Biol.1, 1–54 (2005).

Stramski, D.

Tyo, J. S.

VanderLugt, A.

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory10(2), 139–145 (1964).
[CrossRef]

Voss, K. J.

T. D. Dickey, G. W. Kattawar, and K. J. Voss, “Shedding new light on light in the ocean,” Phys. Today64(4), 44–49 (2011).
[CrossRef]

Walker, J. G.

Zaneveld, J. R.

Zhang, X.

Ann. Phys.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Appl. Opt.

G. W. Kattawar, “Genesis and evolution of polarization of light in the ocean [invited],” Appl. Opt.52(5), 940–948 (2013).
[CrossRef] [PubMed]

B. V. Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt.31(23), 4773–4801 (1992).
[CrossRef] [PubMed]

J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt.23(6), 812–816 (1984).
[CrossRef] [PubMed]

J. L. Horner, “Metrics for assessing pattern-recognition performance,” Appl. Opt.31(2), 165–166 (1992).
[CrossRef] [PubMed]

I. Leonard, A. Alfalou, and C. Brosseau, “Spectral optimized asymmetric segmented phase-only correlation filter,” Appl. Opt.51(14), 2638–2650 (2012).
[CrossRef] [PubMed]

P. C. Y. Chang, J. C. Flitton, K. I. Hopcraft, E. Jakeman, D. L. Jordan, and J. G. Walker, “Improving visibility depth in passive underwater imaging by use of polarization,” Appl. Opt.42(15), 2794–2803 (2003).
[CrossRef] [PubMed]

M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt.52(5), 997–1005 (2013).
[CrossRef] [PubMed]

J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt.35(11), 1855–1870 (1996).
[CrossRef] [PubMed]

D. J. Bogucki, J. A. Domaradzki, D. Stramski, and J. R. Zaneveld, “Comparison of near-forward light scattering on oceanic turbulence and particles,” Appl. Opt.37(21), 4669–4677 (1998).
[CrossRef] [PubMed]

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt.48(8), 1610–1618 (2009).
[CrossRef] [PubMed]

Cah. Oceanogr.

A. Morel, “Note au sujet des constantes de diffusion de la lumière pour l’eau et l’eau de mer optiquement pures,” Cah. Oceanogr.20, 157–162 (1968).

EURASIP J. Adv. Signal Process.

C. Barat and R. Phlypo, “A fully automated method to detect and segment a manufactured object in an underwater color image,” EURASIP J. Adv. Signal Process.2010, 1–11 (2010).
[CrossRef]

IEEE Trans. Inf. Theory

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory10(2), 139–145 (1964).
[CrossRef]

J. Chem. Phys.

A. Morel, “Etude expérimentale de la diffusion de la lumière dans l’eau, les solutions de chlorure de sodium et l’eau de mer optiquement pures,” J. Chem. Phys.10, 1359–1366 (1966).

J. Opt. Soc. Am. A

Opt. Express

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Phys. Today

T. D. Dickey, G. W. Kattawar, and K. J. Voss, “Shedding new light on light in the ocean,” Phys. Today64(4), 44–49 (2011).
[CrossRef]

Recent Res. Devel. Experimental Theoretical Biol.

S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Underwater polarization A physical examination,” Recent Res. Devel. Experimental Theoretical Biol.1, 1–54 (2005).

Other

I. Leonard, A. Alfalou, and C. Brosseau, “Face recognition: based on composite correlation filters: analysis of their performances,” in Face Recognition: Methods, Applications and Technology, A. Quaglia and C. M. Epifano (eds.), Nova Science Publishers, Chap. 3, pp. 57–80 (2012).

A. Arnold-Bos, J. Malkasse, and G. Kervern, “Towards a model-free denoising of underwater optical images,” in Proceedings of the IEEE Conference on Ocean (Europe), 2005.
[CrossRef]

I. Leonard, A. Arnold-Bos, A. Alfalou, and N. Mandelert, “Improvement of automatic man-made object detection in underwater videos by use of navigational information,” in ICoURS'12, October 2012.

B. McGlamery, “Computer analysis and simulation of underwater camera system performance,” University of California, San Diego, Scripps Institution of Oceanography, Visibility Laboratory, Technical Report (1975).

I. Leonard, “Reconnaissance des objets manufacturés dans des vidéos sous-marines,” Ph. D. thesis, Université de Bretagne Occidentale, (2012).

R. C. Duncan, America’s use of sea mines, White Oak: United States Naval Ordinance Laboratory, 1962.

H. S. Levie, Mine Warfare at Sea (Martinus Nijhoff Publishers, Dordrecht, 1992).

G. K. Hartmann and S. Truver, Weapons that wait: mine warfare in the United States Navy (Naval Institute Press, Annapolis, 1991).

A. Alfalou and C. Brosseau, “Understanding correlation techniques for face recognition: from basics to applications,” in Face Recognition, Milos Oravec (Ed.), ISBN: 978–953–307–060–5, In-Tech (2010).

I. Leonard, A. Arnold-Bos, and A. Alfalou, “Interest of correlation-based automatic target recognition in underwater optical images: theoretical justification and first results,” in Proc. SPIE, 7678, 2010.
[CrossRef]

C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).

L. Bartolini, L. De Dominicis, M. Ferride Collibus, G. Fornetti, M. Francucci, M. Guarneri, E. Paglia, C. Poggi, and R. Ricci, “Polarimetry as tool to improve phase measurement in an amplitude modulated laser for submarine archaeological sites inspection,” in Proc. of SPIE, Vol. 6618, 66180I, 2007.
[CrossRef]

http://www.sealife-cameras.com/fr/cam%C3%A9ras/dc1400-pro-vid%C3%A9o

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Illustration of the scattering and absorption of light in underwater imaging.

Fig. 2
Fig. 2

Examples of mines investigated in this work: (a) spherical mine, (b) cylindrical mine, and (c) Manta mine. These mines are immersed in seawater at a depth of 19 m. The camera is placed at 1.1m from the mines. Illumination comes from sunlight.

Fig. 3
Fig. 3

Image preprocessing protocol. The first step consists in character suppression (block 2) that includes edges. Then undersampling and filtering allow us to reduce the size and noise (blocks 3 and 4). Edge enhancement improves the edge detection. The first row images show the results of each step. The second row images correspond to phase images on where the improvement on edge detection can be seen.

Fig. 4
Fig. 4

Illustration of the detection method. Red and blue lines delimit the studied bands.

Fig. 5
Fig. 5

Zoom of a specific image in a video sequence showing how to define the detection rate Pd and the false alarm rate Pfa. The frame in blue corresponds to a true detection area.

Fig. 6
Fig. 6

Image from a video with no detected mine, but containing a piece of rope which contributes to the false alarm rate.

Fig. 7
Fig. 7

Identification of the Manta mine as a function of the mine-to-camera distance.

Fig. 8
Fig. 8

Comparison of the identification performances for the POF and ASPOF as a function of the Manta mine-to-camera distance.

Fig. 9
Fig. 9

Concept diagram of the polarization filtering in a linear polarization scheme.

Fig. 10
Fig. 10

(a) Light source and camera used in our in situ experiments; (b) Experimental arrangement for the polarization optical imaging in the backscattering geometry.

Fig. 11
Fig. 11

A picture of the large volume tank.

Fig. 12
Fig. 12

Two examples of target used: (a) rusted sphere, and (b) painted sphere.

Fig. 13
Fig. 13

Target in pure water.

Fig. 14
Fig. 14

Target in turbid water consisting of 1 L of skimmed milk dispersed in the tank containing 6000 L of water.

Fig. 15
Fig. 15

(a) Unpolarization image of the near-spherical object, (b) same object imaged with LPP, and (c) imaged with LCP. The target localization is framed in red. The camera-to-object distance is fixed to 1.50 m.

Fig. 16
Fig. 16

Identification results with raw images as a function of the object-to-camera distance. Red stars correspond to horizontal distances between the object and the camera for which no object is present. Red rectangles correspond to the identification area.

Fig. 17
Fig. 17

As Fig. 16 for linear parallel polarization.

Fig. 18
Fig. 18

As Fig. 16 for linear crossed polarization.

Tables (4)

Tables Icon

Table 1 Results of the detection algorithm. Each row corresponds to a specific type of mine.

Tables Icon

Table 2 Comparison of the identification performances for the different mines.

Tables Icon

Table 3 Comparison of the identification performances for the three objects considered and different polarization conditions.

Tables Icon

Table 4 Comparison of the false alarm rate with or without cable detection.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(z)=I(0)exp(αz)exp (dz)    
PCEA= x= x 0 t x= x 0 +t y= y 0 t y= y 0 +t | 2C(x,y) | 2 x=1 x=N y=1 y=M | C(x,y) | 2 +3 x= x 0 t x= x 0 +t y= y 0 t y= y 0 +t | C(x,y) | 2
P d P dc if PCEA>threshold and if the mine is correctly identified P d P type if PCEA >threshold and if the mine is incorrectly identified, P d P fa

Metrics