Abstract

The zinc oxide (ZnO) nanowire arrays on the indium tin oxide (ITO) glass substrates were fabricated by using the two-step hydrothermal method. A high transmittance ~92% of ZnO nanowire arrays on ITO substrate in the visible region was obtained. It was observed that the liquid crystal (LC) directors were aligned vertically to the (ZnO) nanowire arrays. The properties of ZnO nanowire arrays as vertical liquid crystal (LC) alignment layers and their applications for hybrid-aligned nematic LC modes were investigated in this work.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. V. Kamanina, Features of Liquid Crystal Display Materials and Processes (InTech, 2011).
  2. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley, 2008).
  3. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” Proc. SID 1200 (2004).
  4. S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys.43(11A), 7643–7647 (2004).
    [CrossRef]
  5. W. Y. Teng, S. C. Jeng, C. W. Kuo, Y. R. Lin, C. C. Liao, and W. K. Chin, “Nanoparticles-doped guest-host liquid crystal displays,” Opt. Lett.33(15), 1663–1665 (2008).
    [CrossRef] [PubMed]
  6. W. Y. Teng, S. C. Jeng, J. M. Ding, C. W. Kuo, and W. K. Chin, “Flexible homeotropic liquid crystal displays using low-glass-transition-temperature poly(ethylene terephthalate) substrates,” Jpn. J. Appl. Phys.49(1), 010205 (2010).
    [CrossRef]
  7. T. Maeda and K. Hiroshima, “Vertically aligned nematic liquid crystal on anodic porous alumina,” Jpn. J. Appl. Phys.43(8A), L1004–L1006 (2004).
    [CrossRef]
  8. T. Maeda and K. Hiroshima, “Tilted liquid crystal alignment on asymmetrically grooved porous alumina film,” Jpn. J. Appl. Phys.44(26), L845–L847 (2005).
    [CrossRef]
  9. C. Hong, T. T. Tang, C. Y. Hung, R. P. Pan, and W. Fang, “Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications,” Nanotechnology21(28), 285201 (2010).
    [CrossRef] [PubMed]
  10. W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett.80(22), 4232–4234 (2002).
    [CrossRef]
  11. L. Y. Chen, S. H. Wu, and Y. T. Yin, “Catalyst-free growth of vertical alignment ZnO nanowire arrays by a two-stage process,” J. Phys. Chem. C113(52), 21572–21576 (2009).
    [CrossRef]
  12. S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions,” J. Mater. Chem.12(12), 3773–3778 (2002).
    [CrossRef]
  13. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater.15(5), 464–466 (2003).
    [CrossRef]
  14. T. Y. Olson, A. A. Chernov, B. A. Drabek, J. H. Satcher, and T. Y. J. Han, “Experimental validation of the geometrical selection model for hydrothermally grown zinc oxide nanowire arrays,” Chem. Mater.25(8), 1363–1371 (2013).
    [CrossRef]
  15. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett.81(19), 3648–3650 (2002).
    [CrossRef]
  16. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
    [CrossRef] [PubMed]
  17. Y. J. Lim, Y. E. Choi, S.-W. Kang, D. Y. Kim, S. H. Lee, and Y.-B. Hahn, “Vertical alignment of liquid crystals with zinc oxide nanorods,” Nanotechnology24(34), 345702 (2013).
    [CrossRef] [PubMed]
  18. D. C. Iza, D. Muñoz-Rojas, Q. Jia, B. Swartzentruber, and J. L. Macmanus-Driscoll, “Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells,” Nanoscale Res. Lett.7(1), 655 (2012).
    [CrossRef] [PubMed]
  19. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
    [CrossRef] [PubMed]
  20. Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134–8138 (2010).
    [CrossRef]
  21. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A8(3), 549–553 (1991).
    [CrossRef]
  22. P. K. Samanta, S. K. Patra, A. Ghosh, and P. Roy Chaudhuri, “Visible emission from ZnO nanorods synthesized by simple wet chemical method,” Int. J Nanosci. Nanotech.1, 81–90 (2009).
  23. Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B121(1–2), 42–47 (2005).
    [CrossRef]
  24. T. H. Meen, W. Water, Y. S. Chen, W. R. Chen, L. W. Ji, and C. J. Huang, “Growth of ZnO nanorods by hydrothermal method under different temperatures,” in IEEE International Conference on Electron Devices and Solid-State Circuits, Tainan, Taiwan, 20–22 Dec. 2007.
  25. K. Y. Han, T. Miyashita, and T. Uchida, “Accurate determination and measurement error of pretilt angle in liquid crystal cell,” Jpn. J. Appl. Phys.32(2B), L277–L279 (1993).
    [CrossRef]
  26. E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, 2001).

2013 (2)

T. Y. Olson, A. A. Chernov, B. A. Drabek, J. H. Satcher, and T. Y. J. Han, “Experimental validation of the geometrical selection model for hydrothermally grown zinc oxide nanowire arrays,” Chem. Mater.25(8), 1363–1371 (2013).
[CrossRef]

Y. J. Lim, Y. E. Choi, S.-W. Kang, D. Y. Kim, S. H. Lee, and Y.-B. Hahn, “Vertical alignment of liquid crystals with zinc oxide nanorods,” Nanotechnology24(34), 345702 (2013).
[CrossRef] [PubMed]

2012 (1)

D. C. Iza, D. Muñoz-Rojas, Q. Jia, B. Swartzentruber, and J. L. Macmanus-Driscoll, “Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells,” Nanoscale Res. Lett.7(1), 655 (2012).
[CrossRef] [PubMed]

2010 (3)

W. Y. Teng, S. C. Jeng, J. M. Ding, C. W. Kuo, and W. K. Chin, “Flexible homeotropic liquid crystal displays using low-glass-transition-temperature poly(ethylene terephthalate) substrates,” Jpn. J. Appl. Phys.49(1), 010205 (2010).
[CrossRef]

C. Hong, T. T. Tang, C. Y. Hung, R. P. Pan, and W. Fang, “Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications,” Nanotechnology21(28), 285201 (2010).
[CrossRef] [PubMed]

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134–8138 (2010).
[CrossRef]

2009 (2)

L. Y. Chen, S. H. Wu, and Y. T. Yin, “Catalyst-free growth of vertical alignment ZnO nanowire arrays by a two-stage process,” J. Phys. Chem. C113(52), 21572–21576 (2009).
[CrossRef]

P. K. Samanta, S. K. Patra, A. Ghosh, and P. Roy Chaudhuri, “Visible emission from ZnO nanorods synthesized by simple wet chemical method,” Int. J Nanosci. Nanotech.1, 81–90 (2009).

2008 (2)

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

W. Y. Teng, S. C. Jeng, C. W. Kuo, Y. R. Lin, C. C. Liao, and W. K. Chin, “Nanoparticles-doped guest-host liquid crystal displays,” Opt. Lett.33(15), 1663–1665 (2008).
[CrossRef] [PubMed]

2005 (3)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B121(1–2), 42–47 (2005).
[CrossRef]

T. Maeda and K. Hiroshima, “Tilted liquid crystal alignment on asymmetrically grooved porous alumina film,” Jpn. J. Appl. Phys.44(26), L845–L847 (2005).
[CrossRef]

2004 (2)

T. Maeda and K. Hiroshima, “Vertically aligned nematic liquid crystal on anodic porous alumina,” Jpn. J. Appl. Phys.43(8A), L1004–L1006 (2004).
[CrossRef]

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys.43(11A), 7643–7647 (2004).
[CrossRef]

2003 (1)

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater.15(5), 464–466 (2003).
[CrossRef]

2002 (3)

S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions,” J. Mater. Chem.12(12), 3773–3778 (2002).
[CrossRef]

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett.80(22), 4232–4234 (2002).
[CrossRef]

C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett.81(19), 3648–3650 (2002).
[CrossRef]

1993 (1)

K. Y. Han, T. Miyashita, and T. Uchida, “Accurate determination and measurement error of pretilt angle in liquid crystal cell,” Jpn. J. Appl. Phys.32(2B), L277–L279 (1993).
[CrossRef]

1991 (1)

Chao, Y. C.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134–8138 (2010).
[CrossRef]

Chen, C. Y.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134–8138 (2010).
[CrossRef]

Chen, L. Y.

L. Y. Chen, S. H. Wu, and Y. T. Yin, “Catalyst-free growth of vertical alignment ZnO nanowire arrays by a two-stage process,” J. Phys. Chem. C113(52), 21572–21576 (2009).
[CrossRef]

Chernov, A. A.

T. Y. Olson, A. A. Chernov, B. A. Drabek, J. H. Satcher, and T. Y. J. Han, “Experimental validation of the geometrical selection model for hydrothermally grown zinc oxide nanowire arrays,” Chem. Mater.25(8), 1363–1371 (2013).
[CrossRef]

Chien, L. C.

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys.43(11A), 7643–7647 (2004).
[CrossRef]

Chin, W. K.

W. Y. Teng, S. C. Jeng, J. M. Ding, C. W. Kuo, and W. K. Chin, “Flexible homeotropic liquid crystal displays using low-glass-transition-temperature poly(ethylene terephthalate) substrates,” Jpn. J. Appl. Phys.49(1), 010205 (2010).
[CrossRef]

W. Y. Teng, S. C. Jeng, C. W. Kuo, Y. R. Lin, C. C. Liao, and W. K. Chin, “Nanoparticles-doped guest-host liquid crystal displays,” Opt. Lett.33(15), 1663–1665 (2008).
[CrossRef] [PubMed]

Choi, Y. E.

Y. J. Lim, Y. E. Choi, S.-W. Kang, D. Y. Kim, S. H. Lee, and Y.-B. Hahn, “Vertical alignment of liquid crystals with zinc oxide nanorods,” Nanotechnology24(34), 345702 (2013).
[CrossRef] [PubMed]

Dai, Y. A.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134–8138 (2010).
[CrossRef]

Ding, J. M.

W. Y. Teng, S. C. Jeng, J. M. Ding, C. W. Kuo, and W. K. Chin, “Flexible homeotropic liquid crystal displays using low-glass-transition-temperature poly(ethylene terephthalate) substrates,” Jpn. J. Appl. Phys.49(1), 010205 (2010).
[CrossRef]

Drabek, B. A.

T. Y. Olson, A. A. Chernov, B. A. Drabek, J. H. Satcher, and T. Y. J. Han, “Experimental validation of the geometrical selection model for hydrothermally grown zinc oxide nanowire arrays,” Chem. Mater.25(8), 1363–1371 (2013).
[CrossRef]

Fang, W.

C. Hong, T. T. Tang, C. Y. Hung, R. P. Pan, and W. Fang, “Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications,” Nanotechnology21(28), 285201 (2010).
[CrossRef] [PubMed]

Ghosh, A.

P. K. Samanta, S. K. Patra, A. Ghosh, and P. Roy Chaudhuri, “Visible emission from ZnO nanorods synthesized by simple wet chemical method,” Int. J Nanosci. Nanotech.1, 81–90 (2009).

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Hahn, Y.-B.

Y. J. Lim, Y. E. Choi, S.-W. Kang, D. Y. Kim, S. H. Lee, and Y.-B. Hahn, “Vertical alignment of liquid crystals with zinc oxide nanorods,” Nanotechnology24(34), 345702 (2013).
[CrossRef] [PubMed]

Han, K. Y.

K. Y. Han, T. Miyashita, and T. Uchida, “Accurate determination and measurement error of pretilt angle in liquid crystal cell,” Jpn. J. Appl. Phys.32(2B), L277–L279 (1993).
[CrossRef]

Han, T. Y. J.

T. Y. Olson, A. A. Chernov, B. A. Drabek, J. H. Satcher, and T. Y. J. Han, “Experimental validation of the geometrical selection model for hydrothermally grown zinc oxide nanowire arrays,” Chem. Mater.25(8), 1363–1371 (2013).
[CrossRef]

Hanaoka, K.

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” Proc. SID 1200 (2004).

He, J. H.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134–8138 (2010).
[CrossRef]

Hiroshima, K.

T. Maeda and K. Hiroshima, “Tilted liquid crystal alignment on asymmetrically grooved porous alumina film,” Jpn. J. Appl. Phys.44(26), L845–L847 (2005).
[CrossRef]

T. Maeda and K. Hiroshima, “Vertically aligned nematic liquid crystal on anodic porous alumina,” Jpn. J. Appl. Phys.43(8A), L1004–L1006 (2004).
[CrossRef]

Hong, C.

C. Hong, T. T. Tang, C. Y. Hung, R. P. Pan, and W. Fang, “Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications,” Nanotechnology21(28), 285201 (2010).
[CrossRef] [PubMed]

Hong, J.-M.

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B121(1–2), 42–47 (2005).
[CrossRef]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Hung, C. Y.

C. Hong, T. T. Tang, C. Y. Hung, R. P. Pan, and W. Fang, “Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications,” Nanotechnology21(28), 285201 (2010).
[CrossRef] [PubMed]

Imai, H.

S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions,” J. Mater. Chem.12(12), 3773–3778 (2002).
[CrossRef]

Inoue, Y.

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” Proc. SID 1200 (2004).

Iza, D. C.

D. C. Iza, D. Muñoz-Rojas, Q. Jia, B. Swartzentruber, and J. L. Macmanus-Driscoll, “Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells,” Nanoscale Res. Lett.7(1), 655 (2012).
[CrossRef] [PubMed]

Jeng, S. C.

W. Y. Teng, S. C. Jeng, J. M. Ding, C. W. Kuo, and W. K. Chin, “Flexible homeotropic liquid crystal displays using low-glass-transition-temperature poly(ethylene terephthalate) substrates,” Jpn. J. Appl. Phys.49(1), 010205 (2010).
[CrossRef]

W. Y. Teng, S. C. Jeng, C. W. Kuo, Y. R. Lin, C. C. Liao, and W. K. Chin, “Nanoparticles-doped guest-host liquid crystal displays,” Opt. Lett.33(15), 1663–1665 (2008).
[CrossRef] [PubMed]

Jia, Q.

D. C. Iza, D. Muñoz-Rojas, Q. Jia, B. Swartzentruber, and J. L. Macmanus-Driscoll, “Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells,” Nanoscale Res. Lett.7(1), 655 (2012).
[CrossRef] [PubMed]

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Jung, S. W.

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett.80(22), 4232–4234 (2002).
[CrossRef]

Kang, S.-W.

Y. J. Lim, Y. E. Choi, S.-W. Kang, D. Y. Kim, S. H. Lee, and Y.-B. Hahn, “Vertical alignment of liquid crystals with zinc oxide nanorods,” Nanotechnology24(34), 345702 (2013).
[CrossRef] [PubMed]

Kim, D. H.

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett.80(22), 4232–4234 (2002).
[CrossRef]

Kim, D. Y.

Y. J. Lim, Y. E. Choi, S.-W. Kang, D. Y. Kim, S. H. Lee, and Y.-B. Hahn, “Vertical alignment of liquid crystals with zinc oxide nanorods,” Nanotechnology24(34), 345702 (2013).
[CrossRef] [PubMed]

Kim, S. H.

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys.43(11A), 7643–7647 (2004).
[CrossRef]

Koike, Y.

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” Proc. SID 1200 (2004).

Kuo, C. W.

W. Y. Teng, S. C. Jeng, J. M. Ding, C. W. Kuo, and W. K. Chin, “Flexible homeotropic liquid crystal displays using low-glass-transition-temperature poly(ethylene terephthalate) substrates,” Jpn. J. Appl. Phys.49(1), 010205 (2010).
[CrossRef]

W. Y. Teng, S. C. Jeng, C. W. Kuo, Y. R. Lin, C. C. Liao, and W. K. Chin, “Nanoparticles-doped guest-host liquid crystal displays,” Opt. Lett.33(15), 1663–1665 (2008).
[CrossRef] [PubMed]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Lee, C. J.

C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett.81(19), 3648–3650 (2002).
[CrossRef]

Lee, H. J.

C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett.81(19), 3648–3650 (2002).
[CrossRef]

Lee, S. H.

Y. J. Lim, Y. E. Choi, S.-W. Kang, D. Y. Kim, S. H. Lee, and Y.-B. Hahn, “Vertical alignment of liquid crystals with zinc oxide nanorods,” Nanotechnology24(34), 345702 (2013).
[CrossRef] [PubMed]

Lee, T. J.

C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett.81(19), 3648–3650 (2002).
[CrossRef]

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Liao, C. C.

Lim, Y. J.

Y. J. Lim, Y. E. Choi, S.-W. Kang, D. Y. Kim, S. H. Lee, and Y.-B. Hahn, “Vertical alignment of liquid crystals with zinc oxide nanorods,” Nanotechnology24(34), 345702 (2013).
[CrossRef] [PubMed]

Lin, C. A.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134–8138 (2010).
[CrossRef]

Lin, Y. R.

Lyu, S. C.

C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett.81(19), 3648–3650 (2002).
[CrossRef]

Macmanus-Driscoll, J. L.

D. C. Iza, D. Muñoz-Rojas, Q. Jia, B. Swartzentruber, and J. L. Macmanus-Driscoll, “Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells,” Nanoscale Res. Lett.7(1), 655 (2012).
[CrossRef] [PubMed]

Maeda, T.

T. Maeda and K. Hiroshima, “Tilted liquid crystal alignment on asymmetrically grooved porous alumina film,” Jpn. J. Appl. Phys.44(26), L845–L847 (2005).
[CrossRef]

T. Maeda and K. Hiroshima, “Vertically aligned nematic liquid crystal on anodic porous alumina,” Jpn. J. Appl. Phys.43(8A), L1004–L1006 (2004).
[CrossRef]

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Miyashita, T.

K. Y. Han, T. Miyashita, and T. Uchida, “Accurate determination and measurement error of pretilt angle in liquid crystal cell,” Jpn. J. Appl. Phys.32(2B), L277–L279 (1993).
[CrossRef]

Muñoz-Rojas, D.

D. C. Iza, D. Muñoz-Rojas, Q. Jia, B. Swartzentruber, and J. L. Macmanus-Driscoll, “Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells,” Nanoscale Res. Lett.7(1), 655 (2012).
[CrossRef] [PubMed]

Nakanishi, Y.

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” Proc. SID 1200 (2004).

Ni, Y.-H.

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B121(1–2), 42–47 (2005).
[CrossRef]

Okamoto, K.

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” Proc. SID 1200 (2004).

Olson, T. Y.

T. Y. Olson, A. A. Chernov, B. A. Drabek, J. H. Satcher, and T. Y. J. Han, “Experimental validation of the geometrical selection model for hydrothermally grown zinc oxide nanowire arrays,” Chem. Mater.25(8), 1363–1371 (2013).
[CrossRef]

Pan, R. P.

C. Hong, T. T. Tang, C. Y. Hung, R. P. Pan, and W. Fang, “Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications,” Nanotechnology21(28), 285201 (2010).
[CrossRef] [PubMed]

Park, W. I.

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett.80(22), 4232–4234 (2002).
[CrossRef]

Patra, S. K.

P. K. Samanta, S. K. Patra, A. Ghosh, and P. Roy Chaudhuri, “Visible emission from ZnO nanorods synthesized by simple wet chemical method,” Int. J Nanosci. Nanotech.1, 81–90 (2009).

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Roy Chaudhuri, P.

P. K. Samanta, S. K. Patra, A. Ghosh, and P. Roy Chaudhuri, “Visible emission from ZnO nanorods synthesized by simple wet chemical method,” Int. J Nanosci. Nanotech.1, 81–90 (2009).

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Ruh, H.

C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett.81(19), 3648–3650 (2002).
[CrossRef]

Samanta, P. K.

P. K. Samanta, S. K. Patra, A. Ghosh, and P. Roy Chaudhuri, “Visible emission from ZnO nanorods synthesized by simple wet chemical method,” Int. J Nanosci. Nanotech.1, 81–90 (2009).

Satcher, J. H.

T. Y. Olson, A. A. Chernov, B. A. Drabek, J. H. Satcher, and T. Y. J. Han, “Experimental validation of the geometrical selection model for hydrothermally grown zinc oxide nanowire arrays,” Chem. Mater.25(8), 1363–1371 (2013).
[CrossRef]

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Southwell, W. H.

Swartzentruber, B.

D. C. Iza, D. Muñoz-Rojas, Q. Jia, B. Swartzentruber, and J. L. Macmanus-Driscoll, “Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells,” Nanoscale Res. Lett.7(1), 655 (2012).
[CrossRef] [PubMed]

Tang, T. T.

C. Hong, T. T. Tang, C. Y. Hung, R. P. Pan, and W. Fang, “Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications,” Nanotechnology21(28), 285201 (2010).
[CrossRef] [PubMed]

Tanuma, S.

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” Proc. SID 1200 (2004).

Teng, W. Y.

W. Y. Teng, S. C. Jeng, J. M. Ding, C. W. Kuo, and W. K. Chin, “Flexible homeotropic liquid crystal displays using low-glass-transition-temperature poly(ethylene terephthalate) substrates,” Jpn. J. Appl. Phys.49(1), 010205 (2010).
[CrossRef]

W. Y. Teng, S. C. Jeng, C. W. Kuo, Y. R. Lin, C. C. Liao, and W. K. Chin, “Nanoparticles-doped guest-host liquid crystal displays,” Opt. Lett.33(15), 1663–1665 (2008).
[CrossRef] [PubMed]

Uchida, T.

K. Y. Han, T. Miyashita, and T. Uchida, “Accurate determination and measurement error of pretilt angle in liquid crystal cell,” Jpn. J. Appl. Phys.32(2B), L277–L279 (1993).
[CrossRef]

Vayssieres, L.

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater.15(5), 464–466 (2003).
[CrossRef]

Wei, X.-W.

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B121(1–2), 42–47 (2005).
[CrossRef]

Wu, S. H.

L. Y. Chen, S. H. Wu, and Y. T. Yin, “Catalyst-free growth of vertical alignment ZnO nanowire arrays by a two-stage process,” J. Phys. Chem. C113(52), 21572–21576 (2009).
[CrossRef]

Yamabi, S.

S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions,” J. Mater. Chem.12(12), 3773–3778 (2002).
[CrossRef]

Yang, P. D.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Ye, Y.

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B121(1–2), 42–47 (2005).
[CrossRef]

Yi, G. C.

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett.80(22), 4232–4234 (2002).
[CrossRef]

Yin, Y. T.

L. Y. Chen, S. H. Wu, and Y. T. Yin, “Catalyst-free growth of vertical alignment ZnO nanowire arrays by a two-stage process,” J. Phys. Chem. C113(52), 21572–21576 (2009).
[CrossRef]

Zhang, Y.

C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett.81(19), 3648–3650 (2002).
[CrossRef]

Adv. Mater. (1)

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater.15(5), 464–466 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett.80(22), 4232–4234 (2002).
[CrossRef]

C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett.81(19), 3648–3650 (2002).
[CrossRef]

Chem. Mater. (1)

T. Y. Olson, A. A. Chernov, B. A. Drabek, J. H. Satcher, and T. Y. J. Han, “Experimental validation of the geometrical selection model for hydrothermally grown zinc oxide nanowire arrays,” Chem. Mater.25(8), 1363–1371 (2013).
[CrossRef]

Int. J Nanosci. Nanotech. (1)

P. K. Samanta, S. K. Patra, A. Ghosh, and P. Roy Chaudhuri, “Visible emission from ZnO nanorods synthesized by simple wet chemical method,” Int. J Nanosci. Nanotech.1, 81–90 (2009).

J. Mater. Chem. (2)

S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions,” J. Mater. Chem.12(12), 3773–3778 (2002).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134–8138 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

L. Y. Chen, S. H. Wu, and Y. T. Yin, “Catalyst-free growth of vertical alignment ZnO nanowire arrays by a two-stage process,” J. Phys. Chem. C113(52), 21572–21576 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (5)

W. Y. Teng, S. C. Jeng, J. M. Ding, C. W. Kuo, and W. K. Chin, “Flexible homeotropic liquid crystal displays using low-glass-transition-temperature poly(ethylene terephthalate) substrates,” Jpn. J. Appl. Phys.49(1), 010205 (2010).
[CrossRef]

T. Maeda and K. Hiroshima, “Vertically aligned nematic liquid crystal on anodic porous alumina,” Jpn. J. Appl. Phys.43(8A), L1004–L1006 (2004).
[CrossRef]

T. Maeda and K. Hiroshima, “Tilted liquid crystal alignment on asymmetrically grooved porous alumina film,” Jpn. J. Appl. Phys.44(26), L845–L847 (2005).
[CrossRef]

K. Y. Han, T. Miyashita, and T. Uchida, “Accurate determination and measurement error of pretilt angle in liquid crystal cell,” Jpn. J. Appl. Phys.32(2B), L277–L279 (1993).
[CrossRef]

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys.43(11A), 7643–7647 (2004).
[CrossRef]

Mater. Sci. Eng. B (1)

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B121(1–2), 42–47 (2005).
[CrossRef]

Nano Lett. (1)

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

D. C. Iza, D. Muñoz-Rojas, Q. Jia, B. Swartzentruber, and J. L. Macmanus-Driscoll, “Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells,” Nanoscale Res. Lett.7(1), 655 (2012).
[CrossRef] [PubMed]

Nanotechnology (2)

C. Hong, T. T. Tang, C. Y. Hung, R. P. Pan, and W. Fang, “Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications,” Nanotechnology21(28), 285201 (2010).
[CrossRef] [PubMed]

Y. J. Lim, Y. E. Choi, S.-W. Kang, D. Y. Kim, S. H. Lee, and Y.-B. Hahn, “Vertical alignment of liquid crystals with zinc oxide nanorods,” Nanotechnology24(34), 345702 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (5)

E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, 2001).

T. H. Meen, W. Water, Y. S. Chen, W. R. Chen, L. W. Ji, and C. J. Huang, “Growth of ZnO nanorods by hydrothermal method under different temperatures,” in IEEE International Conference on Electron Devices and Solid-State Circuits, Tainan, Taiwan, 20–22 Dec. 2007.

N. V. Kamanina, Features of Liquid Crystal Display Materials and Processes (InTech, 2011).

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley, 2008).

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” Proc. SID 1200 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics