Abstract

We theoretically and experimentally demonstrate a fiber-optic ultrasonic sensor system based on a fiber-ring laser whose cavity consisting of a regular fiber Bragg grating (FBG) and a tunable optical band-pass filter (TOBPF). The FBG is the sensing element and the TOBPF is used to set the lasing wavelength at a point on the spectral slope of the FBG. The ultrasonic signal is detected by the variations of the laser output intensity in response to the cold-cavity loss modulations from the ultrasonically-induced FBG spectral shift. The system demonstrated here has a simple structure and low cost, making it attractive for acoustic emission detection in structure health monitoring.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
    [CrossRef]
  2. P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng.42(4), 956–963 (2003).
    [CrossRef]
  3. Y. Qiao, Y. Zhou, and S. Krishnaswamy, “Adaptive demodulation of dynamic signals from fiber Bragg gratings using two-wave mixing technology,” Appl. Opt.45(21), 5132–5142 (2006).
    [CrossRef] [PubMed]
  4. H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010).
    [CrossRef] [PubMed]
  5. T. Q. Liu and M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J.12(7), 2368–2373 (2012).
    [CrossRef]
  6. H. Tsuda, “Bragg wavelength-insensitive fiber Bragg grating ultrasound detection system based on a fiber ring laser,” Proc. SPIE7753, 77538J (2011).
    [CrossRef]
  7. H. Tsuda, “Strain-insensitive fiber Bragg grating ultrasonic sensing system using fiber ring laser,” presented in 18th International Conference on Composite Materials Jeju Island, South Korea, 2011).
  8. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express16(3), 1945–1950 (2008).
    [CrossRef] [PubMed]
  9. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a π-phase-shifted fiber Bragg grating,” Opt. Lett.36(10), 1833–1835 (2011).
    [CrossRef] [PubMed]
  10. Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express20(27), 28353–28362 (2012).
    [CrossRef] [PubMed]
  11. T. A. Guo, A. C. L. Wong, W. S. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express19(3), 2485–2492 (2011).
    [CrossRef] [PubMed]
  12. L. Y. Shao, S. T. Lau, X. Y. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. L. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
    [CrossRef]
  13. B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett.17(1), 169–171 (2005).
    [CrossRef]
  14. M. A. Mirza and G. Stewart, “Multiwavelength operation of erbium-doped fiber lasers by periodic filtering and phase modulation,” J. Lightwave Technol.27(8), 1034–1044 (2009).
    [CrossRef]
  15. G. Stewart, G. Whitenett, K. Vijayraghavan, and S. Sridaran, “Investigation of the dynamic response of erbium fiber lasers with potential application for sensors,” J. Lightwave Technol.25(7), 1786–1796 (2007).
    [CrossRef]

2012 (2)

Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express20(27), 28353–28362 (2012).
[CrossRef] [PubMed]

T. Q. Liu and M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J.12(7), 2368–2373 (2012).
[CrossRef]

2011 (3)

2010 (1)

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express16(3), 1945–1950 (2008).
[CrossRef] [PubMed]

L. Y. Shao, S. T. Lau, X. Y. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. L. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett.17(1), 169–171 (2005).
[CrossRef]

2003 (1)

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng.42(4), 956–963 (2003).
[CrossRef]

2001 (1)

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Chan, H. L. W.

L. Y. Shao, S. T. Lau, X. Y. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. L. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett.17(1), 169–171 (2005).
[CrossRef]

Cui, H. L.

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Dong, X. Y.

L. Y. Shao, S. T. Lau, X. Y. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. L. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

Fomitchov, P.

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng.42(4), 956–963 (2003).
[CrossRef]

Galzerano, G.

Gatti, D.

Guan, B. O.

T. A. Guo, A. C. L. Wong, W. S. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express19(3), 2485–2492 (2011).
[CrossRef] [PubMed]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett.17(1), 169–171 (2005).
[CrossRef]

Guo, T. A.

Han, M.

T. Q. Liu and M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J.12(7), 2368–2373 (2012).
[CrossRef]

He, S. L.

L. Y. Shao, S. T. Lau, X. Y. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. L. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

Janner, D.

Krishnaswamy, S.

Kumakura, K.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Laporta, P.

Lau, S. T.

L. Y. Shao, S. T. Lau, X. Y. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. L. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett.17(1), 169–171 (2005).
[CrossRef]

Liu, T. Q.

T. Q. Liu and M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J.12(7), 2368–2373 (2012).
[CrossRef]

Liu, W. S.

Longhi, S.

Lu, C.

Mirza, M. A.

Ntziachristos, V.

Ogihara, S.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Okabe, Y.

Perez, I. M.

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Qiao, Y.

Razansky, D.

Rosenthal, A.

Shao, L. Y.

L. Y. Shao, S. T. Lau, X. Y. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. L. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

Sridaran, S.

Stewart, G.

Tam, H. Y.

T. A. Guo, A. C. L. Wong, W. S. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express19(3), 2485–2492 (2011).
[CrossRef] [PubMed]

L. Y. Shao, S. T. Lau, X. Y. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. L. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett.17(1), 169–171 (2005).
[CrossRef]

Tsuda, H.

H. Tsuda, “Bragg wavelength-insensitive fiber Bragg grating ultrasound detection system based on a fiber ring laser,” Proc. SPIE7753, 77538J (2011).
[CrossRef]

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Udd, E.

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Vijayraghavan, K.

Whitenett, G.

Wong, A. C. L.

Wu, Q.

Zhang, A. P.

L. Y. Shao, S. T. Lau, X. Y. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. L. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

Zhou, Y.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

L. Y. Shao, S. T. Lau, X. Y. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. L. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett.17(1), 169–171 (2005).
[CrossRef]

IEEE Sens. J. (1)

T. Q. Liu and M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J.12(7), 2368–2373 (2012).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Eng. (1)

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng.42(4), 956–963 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (2)

H. Tsuda, “Bragg wavelength-insensitive fiber Bragg grating ultrasound detection system based on a fiber ring laser,” Proc. SPIE7753, 77538J (2011).
[CrossRef]

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Sensors (Basel) (1)

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Other (1)

H. Tsuda, “Strain-insensitive fiber Bragg grating ultrasonic sensing system using fiber ring laser,” presented in 18th International Conference on Composite Materials Jeju Island, South Korea, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of (a) the proposed FRL ultrasonic sensor system; (b) the reflection spectrum of the sensing FBG and the effect of the ultrasonic signal on the spectrum; and (c) the transmission spectrum of the TOBPF.

Fig. 2
Fig. 2

(a) Simulated sensor response to a 200 kHz continuous sinusoidal ultrasonic signal; (b) spectrum of the sensor response.

Fig. 3
Fig. 3

Simulated sensor response to a 5-cycle 200 kHz ultrasonic pulse: (a) signal before the digital BPF and (b) signal after the digital BPF.

Fig. 4
Fig. 4

(a) Schematic of the experiment set up; (b) normalized reflection spectrum of the sensing FBG calculated from the measured transmission spectrum; and (c) measured transmission spectrum of the TOBPF. PC: Polarization controller; Osc.: Oscilloscope.

Fig. 5
Fig. 5

(a-c) Responses from the FRL sensor system and the PZT sensor system to a ultrasonic pulse when the lasing wavelength was tuned to different positions on the slope of the FBG reflection spectrum (for clarity, the signals from the PZT are normalized and shifted in the vertical axis); (d) the FBG reflection spectrum; and (e) the lasing wavelengths corresponding to (a-c) and relative to the FBG spectrum shown in (d).

Fig. 6
Fig. 6

(a) Signals recorded by the oscilloscope from the FRL sensor system and the PZT sensor system when the sensors were applied to a 200 kHz continuous sinusoidal ultrasonic signal (for clarity, the signal from the PZT is normalized and shifted in the vertical axis) and (b) Spectrum recorded by the SA for the amplified RFL output signal.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( ρSl ) d N 2 dt = P p ( 1 e g p l )( ρSl ) N 2 τ 0 g=1 G M g τ ( 1 e g g l ) R ASE ,
R ASE = g=1 G 4m γ g l N 2 τ ( A g 1 ),
d M g dt = M g τ ( G fg e g g l α c 1 )+ P ASEg ,
P ASE = 2m τ γ g l N 2 A g .
G fg = R 0 exp[ ( λ λ 0 Δλ ) 2 ],
G fg = R 0 exp[ ( λ λ 0 Δλ ) 2 ][ 1+kδ λ m sin( 2πft ) ],
P out = hc λτ g=1 G M g ,

Metrics