Abstract

Field measurements of chlorophyll-a (Chl), phycoerythrin (PE), chromophoric dissolved organic matter (CDOM), and variable fluorescence (Fv/Fm) in diverse waters of the California Current, Mediterranean Sea and Gulf of Mexico using 375, 405, 510 and 532 nm laser excitation wavelengths (EW) are analyzed. EW = 375 and 405 nm were found more suitable for Chl assessment in high-Chl (> 10 μg/l) waters. Both EW = 532 and 510 nm can be used to efficiently stimulate PE fluorescence for structural characterization of phytoplankton communities. EW = 375 nm and 405 nm can provide best results for CDOM assessments in offshore oceanic waters; the green EWs can be also used for CDOM measurements in fresh and estuarine water types in conjunction with spectral discrimination between CDOM and PE fluorescence. Both EW = 405 and 510 are suitable for photo-physiological Fv/Fm assessments, though using EW = 405 nm may result in underestimation of PE-containing phytoplankton groups present in mixed phytoplankton assemblages.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985).
    [CrossRef]
  2. Y. Z. Yacobi, “From Tswett to identified flying objects: a concise history of chlorophyll a use for quantification of phytoplankton,” Isr. J. Plant Sci.60(1), 243–251 (2012).
    [CrossRef]
  3. M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
    [CrossRef]
  4. C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010).
    [CrossRef]
  5. A. M. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008).
    [CrossRef]
  6. A. M. Chekalyuk and M. Hafez, “Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration,” Opt. Express19(23), 22643–22658 (2011).
    [CrossRef] [PubMed]
  7. A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
    [CrossRef]
  8. C. S. Yentsch and C. M. Yentsch, “Fluorescence spectral signatures characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res.37, 471–483 (1979).
  9. T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993).
    [CrossRef]
  10. H. L. MacIntyre, E. Lawrenz, and T. L. Richardson, “Taxonomic discrimination of phytoplankton by spectral fluorescence” in Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. D. J. Suggett, O. Prasil, and M. A. Borowitzka, eds. (Springer, 2010).
  11. T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
    [CrossRef] [PubMed]
  12. P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995).
    [CrossRef]
  13. Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993).
    [CrossRef]
  14. Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998).
    [CrossRef] [PubMed]
  15. M. Y. Gorbunov, P. G. Falkowski, and Z. S. Kolber, “Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer,” Limnol. Oceanogr.45(1), 242–245 (2000).
    [CrossRef]
  16. T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
    [CrossRef]
  17. U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993).
    [CrossRef]
  18. U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012).
    [CrossRef] [PubMed]
  19. R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996).
    [CrossRef]
  20. R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999).
    [CrossRef] [PubMed]
  21. A. M. Chekalyuk, R. J. Olson, and H. M. Sosik, “Pump-during-probe fluorometry of phytoplankton: group-specific photosynthetic characteristics from individual cell analysis,” Proc. SPIE2963, 840–845 (1997).
    [CrossRef]
  22. A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1-2), 33–44 (2000).
    [CrossRef] [PubMed]
  23. A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynth. Res.66(1-2), 45–56 (2000).
    [CrossRef] [PubMed]
  24. M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004).
    [CrossRef]
  25. S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
    [CrossRef] [PubMed]
  26. C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
    [CrossRef]
  27. N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007).
    [CrossRef]
  28. C. E. Brown and M. F. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
    [CrossRef] [PubMed]
  29. H. H. Kim, “New algae mapping technique by the use of an airborne laser fluorosensor,” Appl. Opt.12(7), 1454–1459 (1973).
    [CrossRef] [PubMed]
  30. U. Gehlhaar, K. P. Gunther, and J. Luther, “Compact and highly sensitive fluorescence lidar for oceanographic measurements,” Appl. Opt.20(19), 3318–3320 (1981).
    [CrossRef] [PubMed]
  31. M. Bristow, D. Nielsen, D. Bundy, and R. Furtek, “Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation,” Appl. Opt.20(17), 2889–2906 (1981).
    [CrossRef] [PubMed]
  32. S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
    [CrossRef]
  33. F. E. Hoge and R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt.20(18), 3197–3205 (1981).
    [CrossRef] [PubMed]
  34. R. J. Exton, W. M. Houghton, W. E. Esaias, R. C. Harriss, F. H. Farmer, and H. H. White, “Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation,” Appl. Opt.22(1), 54–64 (1983).
    [CrossRef] [PubMed]
  35. K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Adv. Remote Sens.5, 105–113 (1997).
  36. A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe,” EARSeL Adv.Remote Sens.3, 131–139 (1995).
  37. R. Barbini, F. Colao, R. Fantoni, C. Micheli, A. Palucci, and S. Ribezzo, “Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton monitoring of phytoplankton,” J. Mar. Sci.55, 793–802 (1998).
  38. C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger, “Next generation NASA airborne oceanographic lidar system,” Appl. Opt.40(3), 336–342 (2001).
    [CrossRef] [PubMed]
  39. Z. Liu, S. Ma, X. Wang, and Z. Li, “Field detection of chlorophyll-a concentration in the sea surface layer by an airborne oceanographic lidar,” J. Ocean Univ. China7(1), 108–112 (2008).
    [CrossRef]
  40. D. Mauzerall, “Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen,” Proc. Natl. Acad. Sci. U.S.A.69(6), 1358–1362 (1972).
    [CrossRef] [PubMed]
  41. A. M. Chekalyuk, “Advanced Laser Fluorometry: new results and developments,” NASA ocean color research team (2010) http://oceancolor.gsfc.nasa.gov/MEETINGS/OCRT_May2010/
  42. J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
    [CrossRef]
  43. J. I. Goes, H. do Rosario Gomes, E. Haugen, K. McKee, E. D’Sa, A. M. Chekalyuk, D. Stoecker, P. Stabeno, S. Saitoh, and R. Sambrotto, “Fluorescence, pigment, and microscope characterization of Bering Sea phytoplankton community structure and photosynthetic competency in the presence of a Cold Pool during summer,” Deep Sea Res. (provisionally accepted) (2013).
  44. A. Barnard, A. M. Chekalyuk, A. Derr, W. Strubhar, M. A. Hafez, J. Pearson, C. Orrico, and C. Moore, “Aquatic Laser Fluorescence Analyzer (ALFA): a new instrument for characterization of natural aquatic environments,” AGU 2012 Ocean Sciences Meeting (2012). http://www.sgmeet.com/osm2012/viewabstract2.asp?AbstractID=11217
  45. A. M. Chekalyuk and M. A. Hafez, “Next generation Advanced Laser Fluorometry (ALF) for characterization of natural aquatic environments: new instruments,” Opt. Express21(12), 14181–14201 (2013).
    [CrossRef] [PubMed]
  46. A. M. Chekalyuk, “Optical analysis of emissions from stimulated liquids,” Patent application WO2013116769 A1 (2013). https://www.google.com/patents/WO2013116760A1?cl=en&dq=WO2013116760+A1&hl=en&sa=X&ei=N9FKUsJ4863gA8n8gcgB&ved=0CDkQ6AEwAA
  47. G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991).
    [CrossRef]

2013 (1)

2012 (4)

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012).
[CrossRef] [PubMed]

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

Y. Z. Yacobi, “From Tswett to identified flying objects: a concise history of chlorophyll a use for quantification of phytoplankton,” Isr. J. Plant Sci.60(1), 243–251 (2012).
[CrossRef]

2011 (1)

2010 (2)

C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010).
[CrossRef]

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

2009 (1)

M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
[CrossRef]

2008 (3)

Z. Liu, S. Ma, X. Wang, and Z. Li, “Field detection of chlorophyll-a concentration in the sea surface layer by an airborne oceanographic lidar,” J. Ocean Univ. China7(1), 108–112 (2008).
[CrossRef]

A. M. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008).
[CrossRef]

T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
[CrossRef]

2007 (1)

N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007).
[CrossRef]

2004 (1)

M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004).
[CrossRef]

2003 (1)

C. E. Brown and M. F. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
[CrossRef] [PubMed]

2001 (2)

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger, “Next generation NASA airborne oceanographic lidar system,” Appl. Opt.40(3), 336–342 (2001).
[CrossRef] [PubMed]

2000 (3)

M. Y. Gorbunov, P. G. Falkowski, and Z. S. Kolber, “Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer,” Limnol. Oceanogr.45(1), 242–245 (2000).
[CrossRef]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1-2), 33–44 (2000).
[CrossRef] [PubMed]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynth. Res.66(1-2), 45–56 (2000).
[CrossRef] [PubMed]

1999 (1)

R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999).
[CrossRef] [PubMed]

1998 (2)

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998).
[CrossRef] [PubMed]

R. Barbini, F. Colao, R. Fantoni, C. Micheli, A. Palucci, and S. Ribezzo, “Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton monitoring of phytoplankton,” J. Mar. Sci.55, 793–802 (1998).

1997 (2)

K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Adv. Remote Sens.5, 105–113 (1997).

A. M. Chekalyuk, R. J. Olson, and H. M. Sosik, “Pump-during-probe fluorometry of phytoplankton: group-specific photosynthetic characteristics from individual cell analysis,” Proc. SPIE2963, 840–845 (1997).
[CrossRef]

1996 (1)

R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996).
[CrossRef]

1995 (2)

P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995).
[CrossRef]

A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe,” EARSeL Adv.Remote Sens.3, 131–139 (1995).

1993 (4)

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993).
[CrossRef]

T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993).
[CrossRef]

U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993).
[CrossRef]

1991 (1)

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991).
[CrossRef]

1985 (1)

P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985).
[CrossRef]

1983 (1)

1981 (3)

1979 (1)

C. S. Yentsch and C. M. Yentsch, “Fluorescence spectral signatures characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res.37, 471–483 (1979).

1973 (1)

1972 (1)

D. Mauzerall, “Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen,” Proc. Natl. Acad. Sci. U.S.A.69(6), 1358–1362 (1972).
[CrossRef] [PubMed]

Arikese, V.

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

Babichenko, S.

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

Babin, M.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

Baker, A.

N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007).
[CrossRef]

Barbini, R.

R. Barbini, F. Colao, R. Fantoni, C. Micheli, A. Palucci, and S. Ribezzo, “Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton monitoring of phytoplankton,” J. Mar. Sci.55, 793–802 (1998).

Berelson, W. M.

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Bibby, T. S.

T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
[CrossRef]

Bristow, M.

Brown, C. E.

C. E. Brown and M. F. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
[CrossRef] [PubMed]

Bundy, D.

Capone, D. G.

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Carpenter, E. J.

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Chekalyuk, A. M.

A. M. Chekalyuk and M. A. Hafez, “Next generation Advanced Laser Fluorometry (ALF) for characterization of natural aquatic environments: new instruments,” Opt. Express21(12), 14181–14201 (2013).
[CrossRef] [PubMed]

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

A. M. Chekalyuk and M. Hafez, “Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration,” Opt. Express19(23), 22643–22658 (2011).
[CrossRef] [PubMed]

A. M. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008).
[CrossRef]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1-2), 33–44 (2000).
[CrossRef] [PubMed]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynth. Res.66(1-2), 45–56 (2000).
[CrossRef] [PubMed]

R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999).
[CrossRef] [PubMed]

A. M. Chekalyuk, R. J. Olson, and H. M. Sosik, “Pump-during-probe fluorometry of phytoplankton: group-specific photosynthetic characteristics from individual cell analysis,” Proc. SPIE2963, 840–845 (1997).
[CrossRef]

R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996).
[CrossRef]

A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe,” EARSeL Adv.Remote Sens.3, 131–139 (1995).

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Coble, P. G.

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Colao, F.

R. Barbini, F. Colao, R. Fantoni, C. Micheli, A. Palucci, and S. Ribezzo, “Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton monitoring of phytoplankton,” J. Mar. Sci.55, 793–802 (1998).

Coles, V. J.

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Conmy, R. N.

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Cowles, T. J.

T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993).
[CrossRef]

Del Castillo, C. E.

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Demidov, A. A.

A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe,” EARSeL Adv.Remote Sens.3, 131–139 (1995).

Desiderio, R. A.

T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993).
[CrossRef]

do Rosario Gomes, H.

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Doubell, M. J.

M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
[CrossRef]

Esaias, W. E.

Exton, R. J.

Fadeev, V. V.

A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe,” EARSeL Adv.Remote Sens.3, 131–139 (1995).

Falkowski, P.

P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985).
[CrossRef]

Falkowski, P. G.

T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
[CrossRef]

M. Y. Gorbunov, P. G. Falkowski, and Z. S. Kolber, “Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer,” Limnol. Oceanogr.45(1), 242–245 (2000).
[CrossRef]

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998).
[CrossRef] [PubMed]

P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995).
[CrossRef]

Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993).
[CrossRef]

Fantoni, R.

R. Barbini, F. Colao, R. Fantoni, C. Micheli, A. Palucci, and S. Ribezzo, “Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton monitoring of phytoplankton,” J. Mar. Sci.55, 793–802 (1998).

Farmer, F. H.

Fingas, M. F.

C. E. Brown and M. F. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
[CrossRef] [PubMed]

Foster, R. A.

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Furtek, R.

Gehlhaar, U.

Goericke, R.

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

Goes, J. I.

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Gorbunov, M. Y.

T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
[CrossRef]

M. Y. Gorbunov, P. G. Falkowski, and Z. S. Kolber, “Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer,” Limnol. Oceanogr.45(1), 242–245 (2000).
[CrossRef]

A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe,” EARSeL Adv.Remote Sens.3, 131–139 (1995).

Guajardo, R. C.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Gunther, K. P.

Hafez, M.

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

A. M. Chekalyuk and M. Hafez, “Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration,” Opt. Express19(23), 22643–22658 (2011).
[CrossRef] [PubMed]

A. M. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008).
[CrossRef]

Hafez, M. A.

A. M. Chekalyuk and M. A. Hafez, “Next generation Advanced Laser Fluorometry (ALF) for characterization of natural aquatic environments: new instruments,” Opt. Express21(12), 14181–14201 (2013).
[CrossRef] [PubMed]

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Harriss, R. C.

Hoge, F. E.

C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger, “Next generation NASA airborne oceanographic lidar system,” Appl. Opt.40(3), 336–342 (2001).
[CrossRef] [PubMed]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynth. Res.66(1-2), 45–56 (2000).
[CrossRef] [PubMed]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1-2), 33–44 (2000).
[CrossRef] [PubMed]

F. E. Hoge and R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt.20(18), 3197–3205 (1981).
[CrossRef] [PubMed]

Houghton, W. M.

Hudson, N.

N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007).
[CrossRef]

Huot, Y.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

Kaitala, S.

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

Kiefer, D. A.

P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985).
[CrossRef]

Kim, H. H.

Klughammer, C.

U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012).
[CrossRef] [PubMed]

Kokubu, Y.

M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
[CrossRef]

Kolber, Z.

P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995).
[CrossRef]

Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993).
[CrossRef]

Kolber, Z. S.

M. Y. Gorbunov, P. G. Falkowski, and Z. S. Kolber, “Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer,” Limnol. Oceanogr.45(1), 242–245 (2000).
[CrossRef]

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998).
[CrossRef] [PubMed]

Kolbowski, J.

U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012).
[CrossRef] [PubMed]

Krause, G. H.

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991).
[CrossRef]

Kuosa, H.

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

Landry, M.

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

Lawrenz, E.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Li, H.

M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
[CrossRef]

Li, Z.

Z. Liu, S. Ma, X. Wang, and Z. Li, “Field detection of chlorophyll-a concentration in the sea surface layer by an airborne oceanographic lidar,” J. Ocean Univ. China7(1), 108–112 (2008).
[CrossRef]

Liu, Z.

Z. Liu, S. Ma, X. Wang, and Z. Li, “Field detection of chlorophyll-a concentration in the sea surface layer by an airborne oceanographic lidar,” J. Ocean Univ. China7(1), 108–112 (2008).
[CrossRef]

Luther, J.

Ma, S.

Z. Liu, S. Ma, X. Wang, and Z. Li, “Field detection of chlorophyll-a concentration in the sea surface layer by an airborne oceanographic lidar,” J. Ocean Univ. China7(1), 108–112 (2008).
[CrossRef]

MacIntyre, H. L.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Mauzerall, D.

D. Mauzerall, “Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen,” Proc. Natl. Acad. Sci. U.S.A.69(6), 1358–1362 (1972).
[CrossRef] [PubMed]

Metsamaa, L.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

Micheli, C.

R. Barbini, F. Colao, R. Fantoni, C. Micheli, A. Palucci, and S. Ribezzo, “Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton monitoring of phytoplankton,” J. Mar. Sci.55, 793–802 (1998).

Montoya, J. P.

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Muller-Karger, F. E.

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Neubauer, C.

U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993).
[CrossRef]

Neuer, S.

T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993).
[CrossRef]

Nielsen, D.

Ohm, K.

K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Adv. Remote Sens.5, 105–113 (1997).

Olson, R. J.

R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999).
[CrossRef] [PubMed]

A. M. Chekalyuk, R. J. Olson, and H. M. Sosik, “Pump-during-probe fluorometry of phytoplankton: group-specific photosynthetic characteristics from individual cell analysis,” Proc. SPIE2963, 840–845 (1997).
[CrossRef]

R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996).
[CrossRef]

Paerl, H. W.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Palucci, A.

R. Barbini, F. Colao, R. Fantoni, C. Micheli, A. Palucci, and S. Ribezzo, “Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton monitoring of phytoplankton,” J. Mar. Sci.55, 793–802 (1998).

Pinckney, J. L.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Poryvkina, L.

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

Prasil, O.

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998).
[CrossRef] [PubMed]

Proctor, C. W.

C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010).
[CrossRef]

Raateoja, M.

M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004).
[CrossRef]

Reuter, R.

K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Adv. Remote Sens.5, 105–113 (1997).

Reynolds, D.

N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007).
[CrossRef]

Ribezzo, S.

R. Barbini, F. Colao, R. Fantoni, C. Micheli, A. Palucci, and S. Ribezzo, “Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton monitoring of phytoplankton,” J. Mar. Sci.55, 793–802 (1998).

Richardson, T. L.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Roesler, C. S.

C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010).
[CrossRef]

Schirtzinger, C. R.

Schliwa, U.

U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993).
[CrossRef]

Schreiber, U.

U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012).
[CrossRef] [PubMed]

U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993).
[CrossRef]

Seppala, J.

M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004).
[CrossRef]

Seppälä, J.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

Simis, S. G. H.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

Sosik, H. M.

R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999).
[CrossRef] [PubMed]

A. M. Chekalyuk, R. J. Olson, and H. M. Sosik, “Pump-during-probe fluorometry of phytoplankton: group-specific photosynthetic characteristics from individual cell analysis,” Proc. SPIE2963, 840–845 (1997).
[CrossRef]

R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996).
[CrossRef]

Steinberg, D. K.

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Stolze, M.

K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Adv. Remote Sens.5, 105–113 (1997).

Subramaniam, A.

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Swift, R. N.

C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger, “Next generation NASA airborne oceanographic lidar system,” Appl. Opt.40(3), 336–342 (2001).
[CrossRef] [PubMed]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1-2), 33–44 (2000).
[CrossRef] [PubMed]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynth. Res.66(1-2), 45–56 (2000).
[CrossRef] [PubMed]

F. E. Hoge and R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt.20(18), 3197–3205 (1981).
[CrossRef] [PubMed]

Taylor, A. G.

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

Vanderbloemen, L.

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Vargo, G. A.

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Walker, E. A.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Wang, X.

Z. Liu, S. Ma, X. Wang, and Z. Li, “Field detection of chlorophyll-a concentration in the sea surface layer by an airborne oceanographic lidar,” J. Ocean Univ. China7(1), 108–112 (2008).
[CrossRef]

Weis, E.

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991).
[CrossRef]

White, H. H.

Willkomm, R.

K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Adv. Remote Sens.5, 105–113 (1997).

Wright, C. W.

C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger, “Next generation NASA airborne oceanographic lidar system,” Appl. Opt.40(3), 336–342 (2001).
[CrossRef] [PubMed]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1-2), 33–44 (2000).
[CrossRef] [PubMed]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynth. Res.66(1-2), 45–56 (2000).
[CrossRef] [PubMed]

Wyman, K. W.

T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
[CrossRef]

Yacobi, Y. Z.

Y. Z. Yacobi, “From Tswett to identified flying objects: a concise history of chlorophyll a use for quantification of phytoplankton,” Isr. J. Plant Sci.60(1), 243–251 (2012).
[CrossRef]

Yager, P. L.

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

Yamazaki, H.

M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
[CrossRef]

Yentsch, C. M.

C. S. Yentsch and C. M. Yentsch, “Fluorescence spectral signatures characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res.37, 471–483 (1979).

Yentsch, C. S.

C. S. Yentsch and C. M. Yentsch, “Fluorescence spectral signatures characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res.37, 471–483 (1979).

Ylostalo, P.

M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004).
[CrossRef]

Yungel, J. K.

C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger, “Next generation NASA airborne oceanographic lidar system,” Appl. Opt.40(3), 336–342 (2001).
[CrossRef] [PubMed]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynth. Res.66(1-2), 45–56 (2000).
[CrossRef] [PubMed]

,” EARSeL Adv.Remote Sens. (1)

A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe,” EARSeL Adv.Remote Sens.3, 131–139 (1995).

Annu. Rev. Plant Physiol. (1)

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991).
[CrossRef]

Appl. Opt. (6)

Aust. J. Plant Physiol. (1)

P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995).
[CrossRef]

Biochim. Biophys. Acta (1)

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998).
[CrossRef] [PubMed]

Cytometry (1)

R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999).
[CrossRef] [PubMed]

Deep Sea Res. Part II Top. Stud. Oceanogr. (1)

T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
[CrossRef]

EARSeL Adv. Remote Sens. (1)

K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Adv. Remote Sens.5, 105–113 (1997).

Isr. J. Plant Sci. (1)

Y. Z. Yacobi, “From Tswett to identified flying objects: a concise history of chlorophyll a use for quantification of phytoplankton,” Isr. J. Plant Sci.60(1), 243–251 (2012).
[CrossRef]

J. Mar. Res. (1)

C. S. Yentsch and C. M. Yentsch, “Fluorescence spectral signatures characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res.37, 471–483 (1979).

J. Mar. Sci. (1)

R. Barbini, F. Colao, R. Fantoni, C. Micheli, A. Palucci, and S. Ribezzo, “Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton monitoring of phytoplankton,” J. Mar. Sci.55, 793–802 (1998).

J. Ocean Univ. China (1)

Z. Liu, S. Ma, X. Wang, and Z. Li, “Field detection of chlorophyll-a concentration in the sea surface layer by an airborne oceanographic lidar,” J. Ocean Univ. China7(1), 108–112 (2008).
[CrossRef]

J. Plankton Res. (3)

P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985).
[CrossRef]

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
[CrossRef]

Limnol. Oceanogr. (5)

R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996).
[CrossRef]

M. Y. Gorbunov, P. G. Falkowski, and Z. S. Kolber, “Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer,” Limnol. Oceanogr.45(1), 242–245 (2000).
[CrossRef]

Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993).
[CrossRef]

M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004).
[CrossRef]

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Limnol. Oceanogr. Methods (2)

C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010).
[CrossRef]

A. M. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008).
[CrossRef]

Mar. Biol. (1)

T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993).
[CrossRef]

Mar. Pollut. Bull. (1)

C. E. Brown and M. F. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Photosynth. Res. (5)

U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993).
[CrossRef]

U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012).
[CrossRef] [PubMed]

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1-2), 33–44 (2000).
[CrossRef] [PubMed]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynth. Res.66(1-2), 45–56 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Mauzerall, “Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen,” Proc. Natl. Acad. Sci. U.S.A.69(6), 1358–1362 (1972).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. M. Chekalyuk, R. J. Olson, and H. M. Sosik, “Pump-during-probe fluorometry of phytoplankton: group-specific photosynthetic characteristics from individual cell analysis,” Proc. SPIE2963, 840–845 (1997).
[CrossRef]

Remote Sens. Environ. (1)

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

River Res. Appl. (1)

N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007).
[CrossRef]

Water Res. (1)

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Other (6)

H. L. MacIntyre, E. Lawrenz, and T. L. Richardson, “Taxonomic discrimination of phytoplankton by spectral fluorescence” in Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. D. J. Suggett, O. Prasil, and M. A. Borowitzka, eds. (Springer, 2010).

A. M. Chekalyuk, “Advanced Laser Fluorometry: new results and developments,” NASA ocean color research team (2010) http://oceancolor.gsfc.nasa.gov/MEETINGS/OCRT_May2010/

J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:.
[CrossRef]

J. I. Goes, H. do Rosario Gomes, E. Haugen, K. McKee, E. D’Sa, A. M. Chekalyuk, D. Stoecker, P. Stabeno, S. Saitoh, and R. Sambrotto, “Fluorescence, pigment, and microscope characterization of Bering Sea phytoplankton community structure and photosynthetic competency in the presence of a Cold Pool during summer,” Deep Sea Res. (provisionally accepted) (2013).

A. Barnard, A. M. Chekalyuk, A. Derr, W. Strubhar, M. A. Hafez, J. Pearson, C. Orrico, and C. Moore, “Aquatic Laser Fluorescence Analyzer (ALFA): a new instrument for characterization of natural aquatic environments,” AGU 2012 Ocean Sciences Meeting (2012). http://www.sgmeet.com/osm2012/viewabstract2.asp?AbstractID=11217

A. M. Chekalyuk, “Optical analysis of emissions from stimulated liquids,” Patent application WO2013116769 A1 (2013). https://www.google.com/patents/WO2013116760A1?cl=en&dq=WO2013116760+A1&hl=en&sa=X&ei=N9FKUsJ4863gA8n8gcgB&ved=0CDkQ6AEwAA

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A map of the ALF underway transect measurements during the CCE LTER process cruise in the California Current, July-August 2012. Dots indicate locations of the underway sampling used for correlation analysis. “Fig 2A” and “Fig 2B” mark locations of spectral measurements displayed in Fig. 2.

Fig. 2
Fig. 2

Example of LSE spectra measured with EW = 375, 405, 510 and 532 nm in Chl-rich (A; Cchl = 4.31 μg L−1) and low-Chl (B; Cchl = 0.14 μg L−1) in seawater during the underway survey in the California Current (Aug. 2012; the sampling locations are shown in Fig. 1).

Fig. 3
Fig. 3

Correlation between Chl concentration and Chl fluorescence normalized to water Raman scattering measured with EW = 375 (A), 405 (B), 510 (C), and 532 (D) nm (see a map of the ALF measurements in Fig. 1).

Fig. 4
Fig. 4

Correlation between Chl fluorescence normalized to water Raman measured with various excitation wavelengths (same data set as in Fig. 3).

Fig. 5
Fig. 5

Regression relationships between group-specific spectral types of PE fluorescence measured with EW = 510 and 532 nm during SearSoar 1 and 2 underway surveys in the California Current (Aug. 2012, see a map in Fig. 1).

Fig. 6
Fig. 6

A transect map of continuous ALF underway Fv/Fm measurements with 405 and 510 nm excitation in the Ligurian Sea (Mediterranean; March 2013).

Fig. 7
Fig. 7

Regression relationships between CDOM fluorescence normalized to water Raman measured with laser excitation at 375, 405, and 510 nm excitation for the underway ALF measurements in the Gulf of Mexico (July 2013). The transect map is displayed in panel A.

Fig. 8
Fig. 8

Surface distributions of the key bio-environmental variables measured with ALF-T instrument across the frontal zone in the California Current in Aug. 2012.

Tables (4)

Tables Icon

Table 1 Summary of Regression Analysis in Figs. 3 and 4.

Tables Icon

Table 2 Comparative Analysis of Excitation Efficiency for Three Spectral Types of Phycoerythrin Fluorescence Using 532 and 510 nm Excitation

Tables Icon

Table 3 Relative Efficiency of CDOM Fluorescence Excitation for Various Wavelengths

Tables Icon

Table 4 Abbreviations Used in Text

Metrics