Abstract

A linearly-polarized, high peak power, short-pulse, Q-switching Yb-doped large-mode-area photonic crystal fiber (PCF) oscillator with three-level system operation is demonstrated. By optimizing cavity parameters and adopting linear polarization component, the laser can easily obtain linearly-polarized output over 2 W at 978 nm with polarization extinction ratio (PER) up to 43 dB without any additional wavelength filter. Less than 50 ns stable output pulses are achieved within repetition range of 10 kHz-200 kHz and short pulse of 9 ns pulse duration, 130 kW peak power at 10 kHz can be reached. The characteristics and the key issues of the laser, such as interpulse ASE, spectrum ASE around 1030 nm, are with detailed discussion in the paper.

© 2013 Optical Society of America

Full Article  |  PDF Article

Errata

Jing He, Songtao Du, Ziwei Wang, Zhaokun Wang, Jun Zhou, and Qihong Lou, "Linearly-polarized short-pulse AOM Q-switched 978 nm photonic crystal fiber laser: errata," Opt. Express 22, A1399-A1399 (2014)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-S6-A1399

References

  • View by:
  • |
  • |
  • |

  1. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
    [CrossRef]
  2. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett.23(5), 355–357 (1998).
    [CrossRef] [PubMed]
  3. R. Selves, J. K. Sahu, L. B. Fu, J. N. Jang, J. Nilsson, A. B. Grudinin, K. H. Ylä-Jarkko, S. A. Alam, P. W. Turner, and J. Moore, “High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm,” Opt. Lett.28(13), 1093–1095 (2003).
    [CrossRef] [PubMed]
  4. R. Selvas, J. K. Sahu, J. Nilsson, S. U. Alam, and A. B. Grudinin, “Q-switched 980 nm Yb-doped Fiber Laser,” in Proceedings of IEEE Lasers and Electro-Optics, CLEO 2002, Technical Digest, pp. 565–566.
  5. P. Li, X. Zhang, S. Zou, Z. Bai, and G. Li, “A Q-switched 980 nm Yb-doped single-mode fiber amplifier and its frequency doubling,” in Photonics and Optoelectronic (SOPO), 2010 Symposium on. IEEE.
    [CrossRef]
  6. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92(6), 061113 (2008).
    [CrossRef]
  7. L. A. Zenteno, J. D. Minelly, M. Dejneka, and S. Crigler, “0.65 W single-mode Yb-fiber laser at 980 nm pumped by 1.1 W Nd:YAG,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper MD.
  8. L. Fu, M. Ibsen, D. Richardson, and D. Payne, “Three-level fiber DFB laser at 980 nm,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper MF22.
  9. J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express16(22), 17891–17902 (2008).
    [CrossRef] [PubMed]
  10. F. Röser, C. Jauregui, J. Limpert, and A. Tünnermann, “94 W 980 nm high brightness Yb-doped fiber laser,” Opt. Express16(22), 17310–17318 (2008).
    [CrossRef] [PubMed]
  11. J. Boullet, R. Dubrasquet, C. Médina, R. Bello-Doua, N. Traynor, and E. Cormier, “Millijoule-class Yb-doped pulsed fiber laser operating at 977 nm,” Opt. Lett.35(10), 1650–1652 (2010).
    [CrossRef] [PubMed]
  12. J. Lhermite, C. Lecaplain, G. Machinet, R. Royon, A. Hideur, and E. Cormier, “Mode-locked 0.5 μJ fiber laser at 976 nm,” Opt. Lett.36(19), 3819–3821 (2011).
    [CrossRef] [PubMed]
  13. J. He, S. Du, J. Zhou, Z. Wang, Z. Wang, and Q. Lou, “Linearly polarized Q-switched large-mode-area photonic crystal fiber laser operating at 978 nm,” in CLEO: Science and Innovations. (Optical Society of America, 2013), paper CTu1K.8.
  14. J. He, Z. Wang, W. Wu, S. Du, Q. Lou, J. Zhou, and X. Li, “Short-length large-mode-area photonic crystal fiber laser operating at 978 nm,” in Proc. SPIE8796, 2nd International Symposium on Laser Interaction with Matter (LIMIS 2012), 87961V.
  15. Y. Wang and C. Q. Xu, “Modeling and optimization of Q-switched double-clad fiber lasers,” Appl. Opt.45(9), 2058–2071 (2006).
    [CrossRef] [PubMed]

2011

2010

2008

2006

2003

1998

1997

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Alam, S. A.

Bello-Doua, R.

Bigot, L.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92(6), 061113 (2008).
[CrossRef]

Boullet, J.

Bouwmans, G.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92(6), 061113 (2008).
[CrossRef]

Cazaux, M.

Cormier, E.

Desmarchelier, R.

Douay, M.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92(6), 061113 (2008).
[CrossRef]

Dubrasquet, R.

Fu, L. B.

Grudinin, A. B.

Hanna, D. C.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett.23(5), 355–357 (1998).
[CrossRef] [PubMed]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Hideur, A.

Jang, J. N.

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92(6), 061113 (2008).
[CrossRef]

Jauregui, C.

Lecaplain, C.

Lhermite, J.

Limpert, J.

Machinet, G.

Médina, C.

Minelly, J. D.

Moore, J.

Nilsson, J.

Paschotta, R.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett.23(5), 355–357 (1998).
[CrossRef] [PubMed]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92(6), 061113 (2008).
[CrossRef]

Quiquempois, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92(6), 061113 (2008).
[CrossRef]

Röser, F.

Royon, R.

Saby, J.

Sahu, J. K.

Salin, F.

Selves, R.

Traynor, N.

Tropper, A. C.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett.23(5), 355–357 (1998).
[CrossRef] [PubMed]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Tünnermann, A.

Turner, P. W.

Wang, Y.

Xu, C. Q.

Ylä-Jarkko, K. H.

Zaouter, Y.

Appl. Opt.

Appl. Phys. Lett.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92(6), 061113 (2008).
[CrossRef]

IEEE J. Quantum Electron.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. Selvas, J. K. Sahu, J. Nilsson, S. U. Alam, and A. B. Grudinin, “Q-switched 980 nm Yb-doped Fiber Laser,” in Proceedings of IEEE Lasers and Electro-Optics, CLEO 2002, Technical Digest, pp. 565–566.

P. Li, X. Zhang, S. Zou, Z. Bai, and G. Li, “A Q-switched 980 nm Yb-doped single-mode fiber amplifier and its frequency doubling,” in Photonics and Optoelectronic (SOPO), 2010 Symposium on. IEEE.
[CrossRef]

J. He, S. Du, J. Zhou, Z. Wang, Z. Wang, and Q. Lou, “Linearly polarized Q-switched large-mode-area photonic crystal fiber laser operating at 978 nm,” in CLEO: Science and Innovations. (Optical Society of America, 2013), paper CTu1K.8.

J. He, Z. Wang, W. Wu, S. Du, Q. Lou, J. Zhou, and X. Li, “Short-length large-mode-area photonic crystal fiber laser operating at 978 nm,” in Proc. SPIE8796, 2nd International Symposium on Laser Interaction with Matter (LIMIS 2012), 87961V.

L. A. Zenteno, J. D. Minelly, M. Dejneka, and S. Crigler, “0.65 W single-mode Yb-fiber laser at 980 nm pumped by 1.1 W Nd:YAG,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper MD.

L. Fu, M. Ibsen, D. Richardson, and D. Payne, “Three-level fiber DFB laser at 980 nm,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper MF22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experiment set-up of the linearly-polarized short-pulse Q-switched 978 nm laser oscillator.

Fig. 2
Fig. 2

(a) Output laser average power and pulse duration as a function of the absorbed pump power at 25 kHz (b) The trace of the output pulse train at maximum output power of 2.1 W in the linearly-polarized mode at 25 kHz.

Fig. 3
Fig. 3

Pulses duration and peak power influenced by the repetition rate in the linearly-polarized mode at maximum incident pump power. Inset: Pulse temporal profile of the 9 ns pulse at 10 kHz.

Fig. 4
Fig. 4

Spectrum of the 2.1 W output power at 25 kHz in the linearly-polarized mode. Insert, far field image of the beam.

Metrics