Abstract

A transmission ellipsometric method has been reformed without a spatial filtering aperture to characterize electro-optic (EO) performance of EO polymers. This method affords much simpler optical setup compared to the reflection method, and lets us easily perform detailed incident angle dependence measurements using a conventional glass substrate and an un-collimated beam. It is demonstrated that the reliable characterization with this method is possible in combination with a simple data analysis. By using the recently matured deposition technique of indium zinc oxide (IZO) on soft materials, it is possible to prepare the EO polymer sandwiched between two transparent electrodes. Thus the transmission method should be re-evaluated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
    [CrossRef]
  2. Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
    [CrossRef]
  3. C.-Y. Lin, A. X. Wang, B. S. Lee, X. Zhang, and R. T. Chen, “High dynamic range electric field sensor for electromagnetic pulse detection,” Opt. Express19(18), 17372–17377 (2011).
    [CrossRef] [PubMed]
  4. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express18(15), 15618–15623 (2010).
    [CrossRef] [PubMed]
  5. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the Art and future prospects,” Chem. Rev.110(1), 25–55 (2010).
    [CrossRef] [PubMed]
  6. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett.56(18), 1734–1736 (1990).
    [CrossRef]
  7. J. S. Schildkraut, “Determination of the electrooptic coefficient of a poled polymer film,” Appl. Opt.29(19), 2839–2841 (1990).
    [CrossRef] [PubMed]
  8. Y. Shuto and M. Amano, “Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films,” J. Appl. Phys.77(9), 4632–4638 (1995).
    [CrossRef]
  9. V. Dentan, Y. Lévy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun.69(5–6), 379–383 (1989).
    [CrossRef]
  10. S. Herminghaus, B. A. Smith, and J. D. Swalen, “Electro-optic coefficients in electric-field-poled polymer waveguides,” J. Opt. Soc. Am. B8(11), 2311–2317 (1991).
    [CrossRef]
  11. H. Uchiki and T. Kobayashi, “New determination method of electro‐optic constants and relevant nonlinear susceptibilities and its application to doped polymer,” J. Appl. Phys.64(5), 2625–2629 (1988).
    [CrossRef]
  12. Ph. Prêtre, L.-M. Wu, R. A. Hill, and A. Knoesen, “Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry Perot microcavities,” J. Opt. Soc. Am. B15(1), 379–392 (1998).
    [CrossRef]
  13. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988).
    [CrossRef]
  14. R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, “Electro-optic tensor ratio determination of side-chain copolymers with electro-optic interferometry,” J. Appl. Phys.75(4), 1869–1874 (1994).
    [CrossRef]
  15. D. H. Park, C. H. Lee, and W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express14(19), 8866–8884 (2006).
    [CrossRef] [PubMed]
  16. J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
    [CrossRef] [PubMed]
  17. D. H. Park, J. Luo, A. K.-Y. Jen, and W. N. Herman, “Simplified reflection Fabry-Perot method for determination of electro-optic coefficients of poled polymer thin films,” Polymers3(4), 1310–1324 (2011).
    [CrossRef]
  18. C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
    [CrossRef]
  19. Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B4, 1–19 (1993).
  20. P.-A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic coefficient determination in stratified organized molecular thin films: application to poled polymers,” Thin Solid Films242(1–2), 132–138 (1994).
    [CrossRef]
  21. F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng-Man technique,” Chem. Phys.245(1–3), 311–326 (1999).
    [CrossRef]
  22. B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
    [CrossRef]
  23. X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011).
    [CrossRef]
  24. P. M. Lundquist, M. Jurich, J.-F. Wang, H. Zhou, T. J. Marks, and G. K. Wong, “Electro-optical characterization of poled- polymer films in transmission,” Appl. Phys. Lett.69(7), 901–903 (1996).
    [CrossRef]
  25. S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater.22(46), 5227–5239 (2010).
    [CrossRef] [PubMed]
  26. Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
    [CrossRef]
  27. J.-A. Jeong, J.-Y. Lee, and H.-K. Kim, “Inverted OLED with low resistance IZO-Ag-IZO anode prepared by linear FTS system at room temperature,” Electrochem. Solid State Lett.12(11), J105–J108 (2009).
    [CrossRef]
  28. D. G. Jun, H. H. Cho, D. B. Jo, and K. M. Lee, “Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering,” J. Ceram. Process. Res.13, s260–s264 (2012).
  29. T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys.139(2-3), 699–705 (2013).
    [CrossRef]
  30. T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater.35(12), 2194–2200 (2013).
    [CrossRef]

2013 (2)

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys.139(2-3), 699–705 (2013).
[CrossRef]

T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater.35(12), 2194–2200 (2013).
[CrossRef]

2012 (1)

D. G. Jun, H. H. Cho, D. B. Jo, and K. M. Lee, “Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering,” J. Ceram. Process. Res.13, s260–s264 (2012).

2011 (3)

C.-Y. Lin, A. X. Wang, B. S. Lee, X. Zhang, and R. T. Chen, “High dynamic range electric field sensor for electromagnetic pulse detection,” Opt. Express19(18), 17372–17377 (2011).
[CrossRef] [PubMed]

D. H. Park, J. Luo, A. K.-Y. Jen, and W. N. Herman, “Simplified reflection Fabry-Perot method for determination of electro-optic coefficients of poled polymer thin films,” Polymers3(4), 1310–1324 (2011).
[CrossRef]

X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011).
[CrossRef]

2010 (4)

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater.22(46), 5227–5239 (2010).
[CrossRef] [PubMed]

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the Art and future prospects,” Chem. Rev.110(1), 25–55 (2010).
[CrossRef] [PubMed]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express18(15), 15618–15623 (2010).
[CrossRef] [PubMed]

2009 (2)

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

J.-A. Jeong, J.-Y. Lee, and H.-K. Kim, “Inverted OLED with low resistance IZO-Ag-IZO anode prepared by linear FTS system at room temperature,” Electrochem. Solid State Lett.12(11), J105–J108 (2009).
[CrossRef]

2008 (2)

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
[CrossRef]

2007 (1)

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

2006 (1)

1999 (1)

F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng-Man technique,” Chem. Phys.245(1–3), 311–326 (1999).
[CrossRef]

1998 (1)

1997 (1)

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

1996 (1)

P. M. Lundquist, M. Jurich, J.-F. Wang, H. Zhou, T. J. Marks, and G. K. Wong, “Electro-optical characterization of poled- polymer films in transmission,” Appl. Phys. Lett.69(7), 901–903 (1996).
[CrossRef]

1995 (1)

Y. Shuto and M. Amano, “Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films,” J. Appl. Phys.77(9), 4632–4638 (1995).
[CrossRef]

1994 (2)

P.-A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic coefficient determination in stratified organized molecular thin films: application to poled polymers,” Thin Solid Films242(1–2), 132–138 (1994).
[CrossRef]

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, “Electro-optic tensor ratio determination of side-chain copolymers with electro-optic interferometry,” J. Appl. Phys.75(4), 1869–1874 (1994).
[CrossRef]

1993 (1)

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B4, 1–19 (1993).

1991 (1)

1990 (2)

J. S. Schildkraut, “Determination of the electrooptic coefficient of a poled polymer film,” Appl. Opt.29(19), 2839–2841 (1990).
[CrossRef] [PubMed]

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett.56(18), 1734–1736 (1990).
[CrossRef]

1989 (1)

V. Dentan, Y. Lévy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun.69(5–6), 379–383 (1989).
[CrossRef]

1988 (2)

H. Uchiki and T. Kobayashi, “New determination method of electro‐optic constants and relevant nonlinear susceptibilities and its application to doped polymer,” J. Appl. Phys.64(5), 2625–2629 (1988).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988).
[CrossRef]

Amano, M.

Y. Shuto and M. Amano, “Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films,” J. Appl. Phys.77(9), 4632–4638 (1995).
[CrossRef]

Aoki, I.

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys.139(2-3), 699–705 (2013).
[CrossRef]

T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater.35(12), 2194–2200 (2013).
[CrossRef]

X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011).
[CrossRef]

Baehr-Jones, T.

Bale, D. H.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the Art and future prospects,” Chem. Rev.110(1), 25–55 (2010).
[CrossRef] [PubMed]

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

Benight, S.

Bertolotti, M.

F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng-Man technique,” Chem. Phys.245(1–3), 311–326 (1999).
[CrossRef]

Bojko, R.

Chastaing, E.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B4, 1–19 (1993).

V. Dentan, Y. Lévy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun.69(5–6), 379–383 (1989).
[CrossRef]

Chen, A.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Chen, R. T.

Chen, S.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater.22(46), 5227–5239 (2010).
[CrossRef] [PubMed]

Cho, H. H.

D. G. Jun, H. H. Cho, D. B. Jo, and K. M. Lee, “Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering,” J. Ceram. Process. Res.13, s260–s264 (2012).

Chollet, P. A.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B4, 1–19 (1993).

Chollet, P.-A.

P.-A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic coefficient determination in stratified organized molecular thin films: application to poled polymers,” Thin Solid Films242(1–2), 132–138 (1994).
[CrossRef]

Comizzoli, R. B.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988).
[CrossRef]

Dalton, L.

Dalton, L. R.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the Art and future prospects,” Chem. Rev.110(1), 25–55 (2010).
[CrossRef] [PubMed]

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Davies, J. A.

B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
[CrossRef]

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

Deng, L.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater.22(46), 5227–5239 (2010).
[CrossRef] [PubMed]

Dentan, V.

V. Dentan, Y. Lévy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun.69(5–6), 379–383 (1989).
[CrossRef]

DeRose, C. T.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Ding, R.

Dumont, M.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B4, 1–19 (1993).

V. Dentan, Y. Lévy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun.69(5–6), 379–383 (1989).
[CrossRef]

Eichinger, B. E.

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
[CrossRef]

Elangovan, A.

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

Enami, Y.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Ewy, T. R.

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
[CrossRef]

Fallahi, M.

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

Fan, Q.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater.22(46), 5227–5239 (2010).
[CrossRef] [PubMed]

Fedeli, J.-M.

Fetterman, H. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Fournier, M.

Gadret, G.

P.-A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic coefficient determination in stratified organized molecular thin films: application to poled polymers,” Thin Solid Films242(1–2), 132–138 (1994).
[CrossRef]

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B4, 1–19 (1993).

Greenlee, C.

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Guilmo, A.

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

Herman, W. N.

D. H. Park, J. Luo, A. K.-Y. Jen, and W. N. Herman, “Simplified reflection Fabry-Perot method for determination of electro-optic coefficients of poled polymer thin films,” Polymers3(4), 1310–1324 (2011).
[CrossRef]

D. H. Park, C. H. Lee, and W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express14(19), 8866–8884 (2006).
[CrossRef] [PubMed]

Herminghaus, S.

Hill, R. A.

Himmelhuber, R.

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

Hochberg, M.

Holland, W. R.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988).
[CrossRef]

Hong, M.

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

Huang, S.

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express18(15), 15618–15623 (2010).
[CrossRef] [PubMed]

Huang, W.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater.22(46), 5227–5239 (2010).
[CrossRef] [PubMed]

Inoue, S.

X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011).
[CrossRef]

Isborn, C. M.

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

Jang, J. N.

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

Jang, W.-G.

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

Jen, A.

Jen, A. K.-Y.

D. H. Park, J. Luo, A. K.-Y. Jen, and W. N. Herman, “Simplified reflection Fabry-Perot method for determination of electro-optic coefficients of poled polymer thin films,” Polymers3(4), 1310–1324 (2011).
[CrossRef]

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Jeong, J.-A.

J.-A. Jeong, J.-Y. Lee, and H.-K. Kim, “Inverted OLED with low resistance IZO-Ag-IZO anode prepared by linear FTS system at room temperature,” Electrochem. Solid State Lett.12(11), J105–J108 (2009).
[CrossRef]

Jo, D. B.

D. G. Jun, H. H. Cho, D. B. Jo, and K. M. Lee, “Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering,” J. Ceram. Process. Res.13, s260–s264 (2012).

Jun, D. G.

D. G. Jun, H. H. Cho, D. B. Jo, and K. M. Lee, “Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering,” J. Ceram. Process. Res.13, s260–s264 (2012).

Jurich, M.

P. M. Lundquist, M. Jurich, J.-F. Wang, H. Zhou, T. J. Marks, and G. K. Wong, “Electro-optical characterization of poled- polymer films in transmission,” Appl. Phys. Lett.69(7), 901–903 (1996).
[CrossRef]

Kajzar, F.

P.-A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic coefficient determination in stratified organized molecular thin films: application to poled polymers,” Thin Solid Films242(1–2), 132–138 (1994).
[CrossRef]

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B4, 1–19 (1993).

Katz, H. E.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988).
[CrossRef]

Keosian, R. A.

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, “Electro-optic tensor ratio determination of side-chain copolymers with electro-optic interferometry,” J. Appl. Phys.75(4), 1869–1874 (1994).
[CrossRef]

Kim, D. C.

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

Kim, H.-K.

J.-A. Jeong, J.-Y. Lee, and H.-K. Kim, “Inverted OLED with low resistance IZO-Ag-IZO anode prepared by linear FTS system at room temperature,” Electrochem. Solid State Lett.12(11), J105–J108 (2009).
[CrossRef]

Kim, J.

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

Kim, T. D.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Knoesen, A.

Kobayashi, T.

H. Uchiki and T. Kobayashi, “New determination method of electro‐optic constants and relevant nonlinear susceptibilities and its application to doped polymer,” J. Appl. Phys.64(5), 2625–2629 (1988).
[CrossRef]

Koishi, M.

X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011).
[CrossRef]

Kuzyk, M. G.

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, “Electro-optic tensor ratio determination of side-chain copolymers with electro-optic interferometry,” J. Appl. Phys.75(4), 1869–1874 (1994).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988).
[CrossRef]

Kwon, S.

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

Lalama, S. J.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988).
[CrossRef]

Lee, B. J.

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

Lee, B. S.

Lee, C. H.

Lee, J.-Y.

J.-A. Jeong, J.-Y. Lee, and H.-K. Kim, “Inverted OLED with low resistance IZO-Ag-IZO anode prepared by linear FTS system at room temperature,” Electrochem. Solid State Lett.12(11), J105–J108 (2009).
[CrossRef]

Lee, K. M.

D. G. Jun, H. H. Cho, D. B. Jo, and K. M. Lee, “Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering,” J. Ceram. Process. Res.13, s260–s264 (2012).

Lee, Y.

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

Levy, Y.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B4, 1–19 (1993).

Lévy, Y.

V. Dentan, Y. Lévy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun.69(5–6), 379–383 (1989).
[CrossRef]

Li, X.

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

Lin, C.-Y.

Liu, Y.

Loychik, C.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Lundquist, P. M.

P. M. Lundquist, M. Jurich, J.-F. Wang, H. Zhou, T. J. Marks, and G. K. Wong, “Electro-optical characterization of poled- polymer films in transmission,” Appl. Phys. Lett.69(7), 901–903 (1996).
[CrossRef]

Luo, J.

D. H. Park, J. Luo, A. K.-Y. Jen, and W. N. Herman, “Simplified reflection Fabry-Perot method for determination of electro-optic coefficients of poled polymer thin films,” Polymers3(4), 1310–1324 (2011).
[CrossRef]

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express18(15), 15618–15623 (2010).
[CrossRef] [PubMed]

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Man, H. T.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett.56(18), 1734–1736 (1990).
[CrossRef]

Marks, T. J.

P. M. Lundquist, M. Jurich, J.-F. Wang, H. Zhou, T. J. Marks, and G. K. Wong, “Electro-optical characterization of poled- polymer films in transmission,” Appl. Phys. Lett.69(7), 901–903 (1996).
[CrossRef]

Mathine, D.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Michelotti, F.

F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng-Man technique,” Chem. Phys.245(1–3), 311–326 (1999).
[CrossRef]

Miki, H.

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys.139(2-3), 699–705 (2013).
[CrossRef]

T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater.35(12), 2194–2200 (2013).
[CrossRef]

Mistry, A. A.

B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
[CrossRef]

Mori, Y.

X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011).
[CrossRef]

Nakaya, A.

X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011).
[CrossRef]

Nicolao, G.

F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng-Man technique,” Chem. Phys.245(1–3), 311–326 (1999).
[CrossRef]

Norwood, R. A.

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, “Electro-optic tensor ratio determination of side-chain copolymers with electro-optic interferometry,” J. Appl. Phys.75(4), 1869–1874 (1994).
[CrossRef]

Oh, K. S.

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

Olbricht, B. C.

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
[CrossRef]

Opadeyi, A.

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

Otomo, A.

T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater.35(12), 2194–2200 (2013).
[CrossRef]

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys.139(2-3), 699–705 (2013).
[CrossRef]

X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011).
[CrossRef]

Park, D. H.

D. H. Park, J. Luo, A. K.-Y. Jen, and W. N. Herman, “Simplified reflection Fabry-Perot method for determination of electro-optic coefficients of poled polymer thin films,” Polymers3(4), 1310–1324 (2011).
[CrossRef]

D. H. Park, C. H. Lee, and W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express14(19), 8866–8884 (2006).
[CrossRef] [PubMed]

Peng, L.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater.22(46), 5227–5239 (2010).
[CrossRef] [PubMed]

Peyghambarian, N.

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Piao, X.

X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011).
[CrossRef]

Prêtre, Ph.

Raimond, P.

P.-A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic coefficient determination in stratified organized molecular thin films: application to poled polymers,” Thin Solid Films242(1–2), 132–138 (1994).
[CrossRef]

Reid, P. J.

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
[CrossRef]

Robin, P.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B4, 1–19 (1993).

V. Dentan, Y. Lévy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun.69(5–6), 379–383 (1989).
[CrossRef]

Robinson, B. H.

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
[CrossRef]

Schildkraut, J. S.

Schilling, M. L.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988).
[CrossRef]

Shi, Y.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Shuto, Y.

Y. Shuto and M. Amano, “Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films,” J. Appl. Phys.77(9), 4632–4638 (1995).
[CrossRef]

Singer, K. D.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988).
[CrossRef]

Smith, B. A.

Sohn, J. E.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988).
[CrossRef]

Steier, W. H.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Sullivan, P.

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the Art and future prospects,” Chem. Rev.110(1), 25–55 (2010).
[CrossRef] [PubMed]

B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
[CrossRef]

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

Swalen, J. D.

Teng, C. C.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett.56(18), 1734–1736 (1990).
[CrossRef]

Tesi, F.

F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng-Man technique,” Chem. Phys.245(1–3), 311–326 (1999).
[CrossRef]

Tian, Y.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Uchiki, H.

H. Uchiki and T. Kobayashi, “New determination method of electro‐optic constants and relevant nonlinear susceptibilities and its application to doped polymer,” J. Appl. Phys.64(5), 2625–2629 (1988).
[CrossRef]

Wang, A. X.

Wang, J.-F.

P. M. Lundquist, M. Jurich, J.-F. Wang, H. Zhou, T. J. Marks, and G. K. Wong, “Electro-optical characterization of poled- polymer films in transmission,” Appl. Phys. Lett.69(7), 901–903 (1996).
[CrossRef]

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Wen, G.-A.

B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
[CrossRef]

Witzens, J.

Wong, G. K.

P. M. Lundquist, M. Jurich, J.-F. Wang, H. Zhou, T. J. Marks, and G. K. Wong, “Electro-optical characterization of poled- polymer films in transmission,” Appl. Phys. Lett.69(7), 901–903 (1996).
[CrossRef]

Wu, L.-M.

Xie, J.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater.22(46), 5227–5239 (2010).
[CrossRef] [PubMed]

Xie, L.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater.22(46), 5227–5239 (2010).
[CrossRef] [PubMed]

Yamada, C.

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys.139(2-3), 699–705 (2013).
[CrossRef]

Yamada, T.

T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater.35(12), 2194–2200 (2013).
[CrossRef]

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys.139(2-3), 699–705 (2013).
[CrossRef]

Yang, I. H.

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

Yokoyama, S.

X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011).
[CrossRef]

Yoo, S. J.

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

Zhang, X.

X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011).
[CrossRef]

C.-Y. Lin, A. X. Wang, B. S. Lee, X. Zhang, and R. T. Chen, “High dynamic range electric field sensor for electromagnetic pulse detection,” Opt. Express19(18), 17372–17377 (2011).
[CrossRef] [PubMed]

Zhou, H.

P. M. Lundquist, M. Jurich, J.-F. Wang, H. Zhou, T. J. Marks, and G. K. Wong, “Electro-optical characterization of poled- polymer films in transmission,” Appl. Phys. Lett.69(7), 901–903 (1996).
[CrossRef]

Zhou, X.-H.

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

Adv. Mater. (1)

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater.22(46), 5227–5239 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett.56(18), 1734–1736 (1990).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988).
[CrossRef]

C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010).
[CrossRef]

P. M. Lundquist, M. Jurich, J.-F. Wang, H. Zhou, T. J. Marks, and G. K. Wong, “Electro-optical characterization of poled- polymer films in transmission,” Appl. Phys. Lett.69(7), 901–903 (1996).
[CrossRef]

Chem. Phys. (1)

F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng-Man technique,” Chem. Phys.245(1–3), 311–326 (1999).
[CrossRef]

Chem. Rev. (1)

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the Art and future prospects,” Chem. Rev.110(1), 25–55 (2010).
[CrossRef] [PubMed]

Electrochem. Solid State Lett. (1)

J.-A. Jeong, J.-Y. Lee, and H.-K. Kim, “Inverted OLED with low resistance IZO-Ag-IZO anode prepared by linear FTS system at room temperature,” Electrochem. Solid State Lett.12(11), J105–J108 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, “Electro-optic tensor ratio determination of side-chain copolymers with electro-optic interferometry,” J. Appl. Phys.75(4), 1869–1874 (1994).
[CrossRef]

H. Uchiki and T. Kobayashi, “New determination method of electro‐optic constants and relevant nonlinear susceptibilities and its application to doped polymer,” J. Appl. Phys.64(5), 2625–2629 (1988).
[CrossRef]

Y. Shuto and M. Amano, “Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films,” J. Appl. Phys.77(9), 4632–4638 (1995).
[CrossRef]

J. Ceram. Process. Res. (1)

D. G. Jun, H. H. Cho, D. B. Jo, and K. M. Lee, “Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering,” J. Ceram. Process. Res.13, s260–s264 (2012).

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008).
[CrossRef]

J. Polym. Sci. A Polym. Chem. (1)

X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011).
[CrossRef]

Mater. Chem. Phys. (1)

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys.139(2-3), 699–705 (2013).
[CrossRef]

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B (1)

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B4, 1–19 (1993).

Nat. Photonics (1)

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Opt. Commun. (1)

V. Dentan, Y. Lévy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun.69(5–6), 379–383 (1989).
[CrossRef]

Opt. Express (3)

Opt. Mater. (1)

T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater.35(12), 2194–2200 (2013).
[CrossRef]

Polymers (1)

D. H. Park, J. Luo, A. K.-Y. Jen, and W. N. Herman, “Simplified reflection Fabry-Perot method for determination of electro-optic coefficients of poled polymer thin films,” Polymers3(4), 1310–1324 (2011).
[CrossRef]

Thin Solid Films (2)

P.-A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic coefficient determination in stratified organized molecular thin films: application to poled polymers,” Thin Solid Films242(1–2), 132–138 (1994).
[CrossRef]

Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the setup for the transmission method. Chemical structures of the EO polymer used in this study are also shown. (b) Schematic of the optical geometry and beam propagation through EO sample.

Fig. 2
Fig. 2

Transmittance spectra of IZOTM (100 nm) deposited on a fused quartz substrate (solid line), EO polymer (1.83 μm) deposited on a quartz substrate (dashed line), and ITO (7 nm) deposited on a glass substrate (dotted line).

Fig. 3
Fig. 3

(a) It(π/2) (solid black line) measured from 30° to 60° by a step of 0.01° and It(π/2)|main (closed red circles) extracted from the data of It(π/2); (b) It(π/2) (closed black circles) enlarged at the small incident angle region between 45° and 45.5° and It(π/2)|main (solid red line) extracted from the data of It(π/2) in the region; (c) Im(π/2) (solid black line) measured from 30° to 60° by a step of 0.01° and Im(π/2)|main (closed red circles) extracted from the data of Im(π/2); (d) Im(π/2) (closed black circles) enlarged at the small incident angle region between 45° and 45.5° and Im(π/2)|main (solid red line) extracted from the data of Im(π/2) in the region; (e) calculated It(π/2) (solid black line) and It(π/2)|main (solid red line) at the incident angles between 30° and 60°; (f) calculated It(π/2) (solid black line) and It(π/2)|main (solid red line) enlarged at the small incident angles region between 45° and 45.5°; (g) calculated Im(π/2) (solid black line) and Im(π/2)|main (solid red line) at the incident angles between 30° and 60°; (h) calculated Im(π/2) (solid black line) and Im(π/2)|main (solid red line) enlarged at the small incident angles region between 45° and 45.5°

Fig. 4
Fig. 4

(a) It(3π/2) (solid black line) measured from 30° to 60° by a step of 0.01° and It(3π/2)\main (closed red circles) extracted from the data of It(3π/2); (b) Im(3π/2) (solid black line) measured from 30° to 60° by a step of 0.01° and Im(3π/2)\main (closed red circles) extracted from the data of Im(3π/2).

Fig. 5
Fig. 5

r33 values obtained at each incident angle region. Closed red triangles and closed red squares represent the r33 values obtained by using the data of It(π/2)|main and Im(π/2)|main and the data of It(3π/2)|main and Im(3π/2)|main, and closed red circles represent the r33 values obtained by using both data.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I t = I 0 4 | ( t 01 s t 10 s e i( Ψ s +Δ) + t 01 s t 10 s r 10 s r 10 s e i( Ψ s +Δ) e i(2 Ψ s +2Δ) ) e iΩ ( t 01 p t 10 p e i( Ψ p +Δ) + t 01 p t 10 p r 10 p r 10 p e i( Ψ p +Δ) e i(2 Ψ p +2Δ) ) | 2 .
I t I 0 4 ( t s t p ) 2 + I 0 t s t p sin 2 Ψ sp +Ω 2 + I 0 2 t s 2 r s cos(2 Ψ s +2Δ)+ I 0 2 t p 2 r p cos(2 Ψ p +2Δ) I 0 2 t s t p r s cos( Ψ sp +2 Ψ s +2Δ+Ω) I 0 2 t s t p r p cos( Ψ sp 2 Ψ p 2Δ+Ω).
I t ( π 2 )= I 0 4 ( t s 2 + t p 2 )+ I 0 2 ( t s 2 r s + t p 2 r p )cos(2Ψ+2Δ)+ I 0 2 ( t s t p r s t s t p r p )sin(2Ψ+2Δ).
I m I 0 2 t s t p sin( Ψ sp +Ω)δ Ψ sp I 0 t s 2 r s sin(2 Ψ s +2Δ)δ Ψ s I 0 t p 2 r p sin(2 Ψ p +2Δ)δ Ψ p + I 0 2 t s t p r s sin( Ψ sp +2 Ψ s +2Δ+Ω)(3δ Ψ s δ Ψ p ) + I 0 2 t s t p r p sin( Ψ sp 2 Ψ p 2Δ+Ω)(δ Ψ s 3δ Ψ p ).
δ Ψ sp = 2Vπ 3λ r 33 n 2 sin 2 θ n 2 sin 2 θ .
I m ( π 2 )= I 0 2 t s t p δ Ψ sp I 0 ( t s 2 r s δ Ψ s + t p 2 r p δ Ψ p )sin(2Ψ+2Δ) + I 0 2 { t s t p r s (3δ Ψ s δ Ψ p )+ t s t p r p (δ Ψ s 3δ Ψ p ) }cos(2Ψ+2Δ).
r 33 ( I m | main I t | main )( 3λ 2Vπ ) n 2 sin 2 θ n 2 sin 2 θ .

Metrics