Abstract

Hollow silica capillaries are examined as optical waveguides evaluating the antiresonant reflecting optical waveguide (ARROW) effect by sequentially reducing the wall thickness through etching and measuring the optical transmission. It is found that the periodicity of the transmission bands is proportional to the wall thickness and that the propagation loss is of the order of a few dB/m.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
    [CrossRef]
  2. Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett.22(17), 892–893 (1986).
    [CrossRef]
  3. F. Prieto, A. Llobera, D. Jiménez, C. Doménguez, A. Calle, and L. M. Lechuga, “Design and analysis of silicon antiresonant reflecting optical waveguides for evanescent field sensor,” J. Lightwave Technol.18(7), 966–972 (2000).
    [CrossRef]
  4. T. Baba, Y. Kokubun, T. Sakaki, and K. Iga, “Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration,” J. Lightwave Technol.6(9), 1440–1445 (1988).
    [CrossRef]
  5. J. M. Kubica, J. Gazecki, and G. K. Reeves, “Multimode operation of ARROW waveguides,” Opt. Commun.102(3,4), 217–220 (1993).
  6. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Waveguide loss optimization in hollow-core ARROW waveguides,” Opt. Express13(23), 9331–9336 (2005).
    [CrossRef] [PubMed]
  7. C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010).
    [CrossRef] [PubMed]
  8. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express18(22), 23133–23146 (2010).
    [CrossRef] [PubMed]
  9. E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett.36(10), 1782–1784 (2011).
    [CrossRef] [PubMed]
  10. T. Hikada, T. Morikawa, and J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle infrared region,” J. Appl. Phys.52(7), 4467–4471 (1981).
    [CrossRef]
  11. Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express10(12), 488–492 (2002).
    [CrossRef] [PubMed]
  12. A. Mazhorova, A. Markov, B. Ung, M. Rozé, S. Gorgutsa, and M. Skorobogatiy, “Thin chalcogenide capillaries as efficient waveguides from mid-IR to terahertz,” J. Opt. Soc. Am. B29(8), 2116–2123 (2012).
    [CrossRef]
  13. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68(9), 1196–1201 (1978).
    [CrossRef]
  14. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core Omniguide fibers,” Opt. Express9(13), 748–779 (2001).
    [CrossRef] [PubMed]
  15. G. Vienne, Y. Xu, C. Jakobsen, H. J. Deyerl, J. B. Jensen, T. Sorensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Opt. Express12(15), 3500–3508 (2004).
    [CrossRef] [PubMed]
  16. C. Baskiotis, Y. Quiquempois, M. Douay, and P. Sillard, “Leakage loss analytical formulas for large-core-low-refractive-index-contrast Bragg fibers,” J. Opt. Soc. Am. B30(7), 1945–1953 (2013).
    [CrossRef]
  17. A. Baz, G. Bouwmans, L. Bigot, and Y. Quiquempois, “Pixelated high-index ring Bragg fibers,” Opt. Express20(17), 18795–18802 (2012).
    [CrossRef] [PubMed]
  18. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002).
    [CrossRef] [PubMed]
  19. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express13(20), 8277–8285 (2005).
    [CrossRef] [PubMed]
  20. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006).
    [CrossRef] [PubMed]
  21. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express15(20), 12680–12685 (2007).
    [CrossRef] [PubMed]
  22. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express18(5), 5142–5150 (2010).
    [CrossRef] [PubMed]
  23. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19(2), 1441–1448 (2011).
    [CrossRef] [PubMed]
  24. W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express21(19), 21912–21917 (2013).
    [CrossRef] [PubMed]
  25. M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE. Trans. Microw. Theory and Technol.28(6), 536–541 (1980).
    [CrossRef]
  26. J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.11(3), 416–423 (1993).
    [CrossRef]
  27. F. Poletti, J. R. Hayes, and D. J. Richardson, “Optimising the performances of hollow antiresonant fibres,” ECOC 2011, paper Mo.2.LeCervin.2 (2011).
  28. R. Romaniuk, “Capillary optical fiber – design, fabrication, characterization and application,” Bulletin of Polish Academy of Science, Technical Sciences56(2), 87–102 (2008).
  29. M. Borecki, M. Korwin-Pawłowski, and M. Beblowska, “Light transmission characteristics of silica capillaries,” Proc. SPIE6347, 634715 (2006).
    [CrossRef]
  30. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
    [CrossRef]
  31. M. Borecki, M. L. K. Pawlowski, M. Beblowska, and A. Jakubowski, “Short capillary tubing as fiber optic sensor of viscosity of liquids,” Proc. SPIE6585, 65851G (2007).
    [CrossRef]
  32. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43(4), 1783–1809 (1964).
    [CrossRef]

2013

2012

2011

2010

2008

R. Romaniuk, “Capillary optical fiber – design, fabrication, characterization and application,” Bulletin of Polish Academy of Science, Technical Sciences56(2), 87–102 (2008).

2007

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

M. Borecki, M. L. K. Pawlowski, M. Beblowska, and A. Jakubowski, “Short capillary tubing as fiber optic sensor of viscosity of liquids,” Proc. SPIE6585, 65851G (2007).
[CrossRef]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express15(20), 12680–12685 (2007).
[CrossRef] [PubMed]

2006

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

M. Borecki, M. Korwin-Pawłowski, and M. Beblowska, “Light transmission characteristics of silica capillaries,” Proc. SPIE6347, 634715 (2006).
[CrossRef]

2005

2004

2002

2001

2000

1993

J. M. Kubica, J. Gazecki, and G. K. Reeves, “Multimode operation of ARROW waveguides,” Opt. Commun.102(3,4), 217–220 (1993).

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.11(3), 416–423 (1993).
[CrossRef]

1988

T. Baba, Y. Kokubun, T. Sakaki, and K. Iga, “Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration,” J. Lightwave Technol.6(9), 1440–1445 (1988).
[CrossRef]

1986

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett.22(17), 892–893 (1986).
[CrossRef]

1981

T. Hikada, T. Morikawa, and J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle infrared region,” J. Appl. Phys.52(7), 4467–4471 (1981).
[CrossRef]

1980

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE. Trans. Microw. Theory and Technol.28(6), 536–541 (1980).
[CrossRef]

1978

1964

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43(4), 1783–1809 (1964).
[CrossRef]

Abeeluck, A. K.

Archambault, J.-L.

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.11(3), 416–423 (1993).
[CrossRef]

Auguste, J.-L.

Baba, T.

T. Baba, Y. Kokubun, T. Sakaki, and K. Iga, “Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration,” J. Lightwave Technol.6(9), 1440–1445 (1988).
[CrossRef]

Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett.22(17), 892–893 (1986).
[CrossRef]

Barber, J. P.

Baskiotis, C.

Baz, A.

Beaudou, B.

Beblowska, M.

M. Borecki, M. L. K. Pawlowski, M. Beblowska, and A. Jakubowski, “Short capillary tubing as fiber optic sensor of viscosity of liquids,” Proc. SPIE6585, 65851G (2007).
[CrossRef]

M. Borecki, M. Korwin-Pawłowski, and M. Beblowska, “Light transmission characteristics of silica capillaries,” Proc. SPIE6347, 634715 (2006).
[CrossRef]

Belardi, W.

Benabid, F.

Bigot, L.

Biriukov, A. S.

Birks, T. A.

Bjarklev, A.

Black, R. J.

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.11(3), 416–423 (1993).
[CrossRef]

Blondy, J.-M.

Borecki, M.

M. Borecki, M. L. K. Pawlowski, M. Beblowska, and A. Jakubowski, “Short capillary tubing as fiber optic sensor of viscosity of liquids,” Proc. SPIE6585, 65851G (2007).
[CrossRef]

M. Borecki, M. Korwin-Pawłowski, and M. Beblowska, “Light transmission characteristics of silica capillaries,” Proc. SPIE6347, 634715 (2006).
[CrossRef]

Bouwmans, G.

Broeng, J.

Bures, J.

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.11(3), 416–423 (1993).
[CrossRef]

Burger, S.

Calle, A.

Chang, H. C.

Couny, F.

Deyerl, H. J.

Dianov, E. M.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Doménguez, C.

Douay, M.

Duguay, M. A.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002).
[CrossRef] [PubMed]

Engeness, T. D.

Férachou, D.

Février, S.

Fink, Y.

Gazecki, J.

J. M. Kubica, J. Gazecki, and G. K. Reeves, “Multimode operation of ARROW waveguides,” Opt. Commun.102(3,4), 217–220 (1993).

Gorgutsa, S.

Hansen, T. P.

Hawkins, A. R.

Headley, C.

Hikada, T.

T. Hikada, T. Morikawa, and J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle infrared region,” J. Appl. Phys.52(7), 4467–4471 (1981).
[CrossRef]

Huang, Y.

Humbert, G.

Ibanescu, M.

Iga, K.

T. Baba, Y. Kokubun, T. Sakaki, and K. Iga, “Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration,” J. Lightwave Technol.6(9), 1440–1445 (1988).
[CrossRef]

Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett.22(17), 892–893 (1986).
[CrossRef]

Jacobs, S. A.

Jakobsen, C.

Jakubowski, A.

M. Borecki, M. L. K. Pawlowski, M. Beblowska, and A. Jakubowski, “Short capillary tubing as fiber optic sensor of viscosity of liquids,” Proc. SPIE6585, 65851G (2007).
[CrossRef]

Jensen, J. B.

Jiménez, D.

Joannopoulos, J. D.

Johnson, S. G.

Kasahara, R.

Katagiri, T.

Knight, J. C.

Koch, T. L.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Kokubun, Y.

T. Baba, Y. Kokubun, T. Sakaki, and K. Iga, “Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration,” J. Lightwave Technol.6(9), 1440–1445 (1988).
[CrossRef]

Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett.22(17), 892–893 (1986).
[CrossRef]

Korwin-Pawlowski, M.

M. Borecki, M. Korwin-Pawłowski, and M. Beblowska, “Light transmission characteristics of silica capillaries,” Proc. SPIE6347, 634715 (2006).
[CrossRef]

Kosolapov, A. F.

Kubica, J. M.

J. M. Kubica, J. Gazecki, and G. K. Reeves, “Multimode operation of ARROW waveguides,” Opt. Commun.102(3,4), 217–220 (1993).

Kukubun, Y.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Lacroix, S.

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.11(3), 416–423 (1993).
[CrossRef]

Lai, C. H.

Lechuga, L. M.

Lee, R. K.

Light, P. S.

Litchinitser, N. M.

Liu, T. A.

Llobera, A.

Lu, J. Y.

Mangan, B. J.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43(4), 1783–1809 (1964).
[CrossRef]

Markov, A.

Marom, E.

Matsuura, Y.

Mazhorova, A.

Miyagi, M.

Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express10(12), 488–492 (2002).
[CrossRef] [PubMed]

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE. Trans. Microw. Theory and Technol.28(6), 536–541 (1980).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Morikawa, T.

T. Hikada, T. Morikawa, and J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle infrared region,” J. Appl. Phys.52(7), 4467–4471 (1981).
[CrossRef]

Mortensen, N. A.

Nguema, E.

Nishida, S.

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE. Trans. Microw. Theory and Technol.28(6), 536–541 (1980).
[CrossRef]

Pawlowski, M. L. K.

M. Borecki, M. L. K. Pawlowski, M. Beblowska, and A. Jakubowski, “Short capillary tubing as fiber optic sensor of viscosity of liquids,” Proc. SPIE6585, 65851G (2007).
[CrossRef]

Pearce, G. J.

Peng, J. L.

Pfeiffer, L.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Plotnichenko, V. G.

Poulton, C. G.

Prieto, F.

Pryamikov, A. D.

Quiquempois, Y.

Reeves, G. K.

J. M. Kubica, J. Gazecki, and G. K. Reeves, “Multimode operation of ARROW waveguides,” Opt. Commun.102(3,4), 217–220 (1993).

Roberts, P. J.

Romaniuk, R.

R. Romaniuk, “Capillary optical fiber – design, fabrication, characterization and application,” Bulletin of Polish Academy of Science, Technical Sciences56(2), 87–102 (2008).

Rozé, M.

Russell, P. St. J.

Sabert, H.

Sakaki, T.

T. Baba, Y. Kokubun, T. Sakaki, and K. Iga, “Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration,” J. Lightwave Technol.6(9), 1440–1445 (1988).
[CrossRef]

Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett.22(17), 892–893 (1986).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43(4), 1783–1809 (1964).
[CrossRef]

Schmidt, H.

Semjonov, S. L.

Setti, V.

Shimada, J.

T. Hikada, T. Morikawa, and J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle infrared region,” J. Appl. Phys.52(7), 4467–4471 (1981).
[CrossRef]

Sillard, P.

Simonsen, H.

Skorobogatiy, M.

Soljacic, M.

Sorensen, T.

St J Russell, P.

Sun, C. K.

Terrel, M.

Ung, B.

Viale, P.

Vienne, G.

Vincetti, L.

Wadsworth, W. J.

Weisberg, O.

Wiederhecker, G. S.

Williams, D. P.

Xu, Y.

Yariv, A.

Yeh, P.

Yin, D.

You, B.

Appl. Phys. Lett.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43(4), 1783–1809 (1964).
[CrossRef]

Bulletin of Polish Academy of Science, Technical Sciences

R. Romaniuk, “Capillary optical fiber – design, fabrication, characterization and application,” Bulletin of Polish Academy of Science, Technical Sciences56(2), 87–102 (2008).

Electron. Lett.

Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett.22(17), 892–893 (1986).
[CrossRef]

IEEE. Trans. Microw. Theory and Technol.

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE. Trans. Microw. Theory and Technol.28(6), 536–541 (1980).
[CrossRef]

J. Appl. Phys.

T. Hikada, T. Morikawa, and J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle infrared region,” J. Appl. Phys.52(7), 4467–4471 (1981).
[CrossRef]

J. Lightwave Technol.

F. Prieto, A. Llobera, D. Jiménez, C. Doménguez, A. Calle, and L. M. Lechuga, “Design and analysis of silicon antiresonant reflecting optical waveguides for evanescent field sensor,” J. Lightwave Technol.18(7), 966–972 (2000).
[CrossRef]

T. Baba, Y. Kokubun, T. Sakaki, and K. Iga, “Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration,” J. Lightwave Technol.6(9), 1440–1445 (1988).
[CrossRef]

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.11(3), 416–423 (1993).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Opt. Commun.

J. M. Kubica, J. Gazecki, and G. K. Reeves, “Multimode operation of ARROW waveguides,” Opt. Commun.102(3,4), 217–220 (1993).

Opt. Express

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Waveguide loss optimization in hollow-core ARROW waveguides,” Opt. Express13(23), 9331–9336 (2005).
[CrossRef] [PubMed]

C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010).
[CrossRef] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express18(22), 23133–23146 (2010).
[CrossRef] [PubMed]

A. Baz, G. Bouwmans, L. Bigot, and Y. Quiquempois, “Pixelated high-index ring Bragg fibers,” Opt. Express20(17), 18795–18802 (2012).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express13(20), 8277–8285 (2005).
[CrossRef] [PubMed]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core Omniguide fibers,” Opt. Express9(13), 748–779 (2001).
[CrossRef] [PubMed]

G. Vienne, Y. Xu, C. Jakobsen, H. J. Deyerl, J. B. Jensen, T. Sorensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Opt. Express12(15), 3500–3508 (2004).
[CrossRef] [PubMed]

Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express10(12), 488–492 (2002).
[CrossRef] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express15(20), 12680–12685 (2007).
[CrossRef] [PubMed]

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express18(5), 5142–5150 (2010).
[CrossRef] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19(2), 1441–1448 (2011).
[CrossRef] [PubMed]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express21(19), 21912–21917 (2013).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

M. Borecki, M. Korwin-Pawłowski, and M. Beblowska, “Light transmission characteristics of silica capillaries,” Proc. SPIE6347, 634715 (2006).
[CrossRef]

M. Borecki, M. L. K. Pawlowski, M. Beblowska, and A. Jakubowski, “Short capillary tubing as fiber optic sensor of viscosity of liquids,” Proc. SPIE6585, 65851G (2007).
[CrossRef]

Other

F. Poletti, J. R. Hayes, and D. J. Richardson, “Optimising the performances of hollow antiresonant fibres,” ECOC 2011, paper Mo.2.LeCervin.2 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross section of capillary with 125 µm outer diameter and (a) 9.5 µm and (b) 18.5 µm wall thickness.

Fig. 2
Fig. 2

(upper) Near-field output image from the 9.5-µm thick capillary. (lower) Near-field output image from the 18.5-µm thick capillary. White light is launched (a,b) into the glass wall, (c,d) partly into the glass wall and partly into the center of the capillary, and (e,f) into the center of the capillary.

Fig. 3
Fig. 3

(a) input spectrum launched into the capillary fibers. (b) output spectrum transmitted through a 9.5-µm walled capillary.

Fig. 4
Fig. 4

Schematic setup of Fabry-Perot reflection off of the walls of the capillary assuming grazing incidence.

Fig. 5
Fig. 5

(a) Sequence of normalized measured spectra from a capillary with initial wall thickness of 9.5 µm, (b) Initial spectrum as a function of frequency showing periodic peak separation and (c) Fourier transform of frequency spectrum and calculated wall thickness (top axis).

Fig. 6
Fig. 6

Reciprocal of frequency peak separation versus wall thickness in capillaries with initial thickness 9.5 µm (black) and 18.5 µm (red) measured after etching during ~30 s periods.

Fig. 7
Fig. 7

Normalized cutback measurement of transmission through 9.5-µm and 18.5-µm thick capillary. The loss (slope) is 6.0 dB/m for the former and 9.7 dB/m for the latter.

Fig. 8
Fig. 8

Simulated propagation loss for the fundamental mode and the first higher order modes for (a) 9.5-µm and (b) 18.5-µm thick capillary.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

4hν c n 2 2 n 1 2 =(2N+1),
Δν= c 2h n 2 2 n 1 2 ,
n ef f μν (λ)=1 1 2 ( u μν λ π2r ) 2 ,

Metrics