Abstract

Images displayed by holographic methods on phase-only light modulators inevitably suffer from speckle noise. It is partly caused by multiple uncontrolled interferences between laser light rays forming adjacent pixels of the image while having a random phase state. In this work the experimental proof of concept of an almost speckle-less projection method is presented, which assumes introducing a spatial separation of the image pixels, thus eliminating the spurious interferences. A single displayed sub-frame consists of separated light spots of very low intensity error. The sub-frames with different sampling offsets are then displayed sequentially to produce a non-fragmented color final image.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Buckley, “Real-time error diffusion for signal-to-noise ratio improvement in a holographic projection system,” J. Disp. Technol.7, 70–76 (2011).
    [CrossRef]
  2. H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt.49(31), 5993–5996 (2010).
    [CrossRef]
  3. E. Buckley, “Holographic laser projection,” J. Disp. Technol.7(3), 135–140 (2011).
    [CrossRef]
  4. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express20(22), 25130–25136 (2012).
    [CrossRef] [PubMed]
  5. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A27(8), 1812–1817 (2010).
    [CrossRef] [PubMed]
  6. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express20(10), 11288–11315 (2012).
    [CrossRef] [PubMed]
  7. M. Makowski, I. Ducin, M. Sypek, A. Siemion, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Color image projection based on Fourier holograms,” Opt. Lett.35(8), 1227–1229 (2010).
    [CrossRef] [PubMed]
  8. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express19(8), 7567–7579 (2011).
    [CrossRef] [PubMed]
  9. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).
  10. T. Peter, F. Wyrowski, and O. Bryngdhal, “Importance of initial distribution for iterative calculation of quantized diffractive elements,” J. Mod. Opt.40(4), 591–600 (1993).
    [CrossRef]
  11. A. Czerwiński, K. Kakarenko, M. Sypek, M. Makowski, I. Ducin, J. Suszek, A. Kolodziejczyk, and J. Bomba, “Modeling of the optical system illuminated by quasi-monochromatic spatially incoherent light: New numerical approach,” Opt. Lett.37(22), 4723–4725 (2012).
    [CrossRef] [PubMed]
  12. M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun.116(1-3), 43–48 (1995).
    [CrossRef]
  13. M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express19(13), 12008–12013 (2011).
    [CrossRef] [PubMed]
  14. T. D. Wilkinson, “Ferroelectric liquid crystal over silicon devices,” Liq. Cryst. Today21(2), 34–41 (2012).
    [CrossRef]
  15. M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng.46(4), 045802 (2007).
    [CrossRef]
  16. M. Makowski, I. Ducin, K. Kakarenko, A. Kolodziejczyk, A. Siemion, A. Siemion, J. Suszek, M. Sypek, and D. Wojnowski, “Efficient image projection by Fourier electroholography,” Opt. Lett.36(16), 3018–3020 (2011).
    [CrossRef] [PubMed]

2012

2011

2010

2007

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng.46(4), 045802 (2007).
[CrossRef]

1995

M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun.116(1-3), 43–48 (1995).
[CrossRef]

1993

T. Peter, F. Wyrowski, and O. Bryngdhal, “Importance of initial distribution for iterative calculation of quantized diffractive elements,” J. Mod. Opt.40(4), 591–600 (1993).
[CrossRef]

1972

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).

Awazu, S.

Bomba, J.

Bryngdhal, O.

T. Peter, F. Wyrowski, and O. Bryngdhal, “Importance of initial distribution for iterative calculation of quantized diffractive elements,” J. Mod. Opt.40(4), 591–600 (1993).
[CrossRef]

Buckley, E.

E. Buckley, “Real-time error diffusion for signal-to-noise ratio improvement in a holographic projection system,” J. Disp. Technol.7, 70–76 (2011).
[CrossRef]

E. Buckley, “Holographic laser projection,” J. Disp. Technol.7(3), 135–140 (2011).
[CrossRef]

Czerwinski, A.

Ducin, I.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).

Goodman, J. W.

Ichihashi, Y.

Ito, T.

Kakarenko, K.

Katagiri, B.

Kawakami, T.

Kolodziejczyk, A.

Kuratomi, Y.

Makowski, M.

Manni, J. G.

Masuda, N.

Mikula, G.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng.46(4), 045802 (2007).
[CrossRef]

Nakayama, H.

Oikawa, M.

Peter, T.

T. Peter, F. Wyrowski, and O. Bryngdhal, “Importance of initial distribution for iterative calculation of quantized diffractive elements,” J. Mod. Opt.40(4), 591–600 (1993).
[CrossRef]

Satoh, H.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).

Sekiya, K.

Shimobaba, T.

Shiraki, A.

Siemion, A.

Suszek, J.

Suzuki, Y.

Sypek, M.

Takada, N.

Takaki, Y.

Tomiyama, T.

Uchida, T.

Wilkinson, T. D.

T. D. Wilkinson, “Ferroelectric liquid crystal over silicon devices,” Liq. Cryst. Today21(2), 34–41 (2012).
[CrossRef]

Wojnowski, D.

Wyrowski, F.

T. Peter, F. Wyrowski, and O. Bryngdhal, “Importance of initial distribution for iterative calculation of quantized diffractive elements,” J. Mod. Opt.40(4), 591–600 (1993).
[CrossRef]

Yoda, T.

Yokouchi, M.

Appl. Opt.

J. Disp. Technol.

E. Buckley, “Real-time error diffusion for signal-to-noise ratio improvement in a holographic projection system,” J. Disp. Technol.7, 70–76 (2011).
[CrossRef]

E. Buckley, “Holographic laser projection,” J. Disp. Technol.7(3), 135–140 (2011).
[CrossRef]

J. Mod. Opt.

T. Peter, F. Wyrowski, and O. Bryngdhal, “Importance of initial distribution for iterative calculation of quantized diffractive elements,” J. Mod. Opt.40(4), 591–600 (1993).
[CrossRef]

J. Opt. Soc. Am. A

Liq. Cryst. Today

T. D. Wilkinson, “Ferroelectric liquid crystal over silicon devices,” Liq. Cryst. Today21(2), 34–41 (2012).
[CrossRef]

Opt. Commun.

M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun.116(1-3), 43–48 (1995).
[CrossRef]

Opt. Eng.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng.46(4), 045802 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Optik

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Analytical sum of fields U1 and U2 forming closely-packed object points: b) under incoherent illumination; c) under coherent illumination with spurious destructive interference; d) under coherent illumination with spurious constructive interference.

Fig. 2
Fig. 2

Analytical sum of fields U1 and U2 forming sparse object points for N = 2 (upper) and N = 3 (bottom): b) under incoherent illumination; c) under coherent illumination with residual interference; d) under coherent illumination with residual constructive interference.

Fig. 3
Fig. 3

Formation of adjacent object points with previous methods and the proposed Pixel Separation Method.

Fig. 4
Fig. 4

Central part of the input bitmap (left) split into 4 pixel groups (sub-frames), here shown in 4 different colors (right).

Fig. 5
Fig. 5

The simulated noise contrast for a variable number of integrated sub-frames (N2). Acceptance levels of noise dictated by the display industry are marked.

Fig. 6
Fig. 6

Scheme of the experimental setup: a) solid state lasers of primary RGB colors; b) polarization control (half wave plates); c) electronic shutters; d) coupling to single mode optical fibers; e) endings of the fibers serving as a set of three point sources; f) non-polarizing beam splitter; g) SLM; h) CMOS matrix (body of the Canon EOS 5D mk2 digital camera).

Fig. 7
Fig. 7

Photograph of the optical head used for projection: a) single mode optical fibers; b) endings of the fibers serving as quasi-point sources; c) beam splitter; d) SLM; e) controller of the SLM.

Fig. 8
Fig. 8

Four exemplary projected sub-frames showing the separation of pixels and low intensity variation.

Fig. 9
Fig. 9

Exemplary projection of the USAF resolution test for N = 5 with very low speckle noise. The image is an integration of 25 sub-frames during a 0.5 s exposure with the red illumination beam.

Fig. 10
Fig. 10

Magnification of the big square element from the experimental projection of the USAF pattern and the graph of intensity for the proposed method and the RPI method.

Fig. 11
Fig. 11

Exemplary monochromatic projections for the input bitmap size of 2048 by 2048 pixels (left) and 1024 by 1024 pixels (right).

Fig. 12
Fig. 12

Experimental projections of color 1024x1024 bitmaps (a), projected with the proposed method (b). Magnified parts (c) are shown to underline the high resolution and sharpness of projections. Photo credits (motocross bikes and tow macaws): Steve Kelly.

Tables (1)

Tables Icon

Table 1 Speckle contrast for different number of integrated sub-frames.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D=2ztan( 1.22 λ d )21μm,

Metrics