Abstract

Following the miniaturization of photonic devices and the increase in data rates, the issues of self heating and heat removal in active nanophotonic devices should be considered and studied in more details. In this paper we use the approach of Scanning Thermal Microscopy (SThM) to obtain an image of the temperature field of a silicon micro ring resonator with sub-micron spatial resolution. The temperature rise in the device is a result of self heating which is caused by free carrier absorption in the doped silicon. The temperature is measured locally and directly using a temperature sensitive AFM probe. We show that this local temperature measurement is feasible in the photonic device despite the perturbation that is introduced by the probe. Using the above method we observed a significant self heating of about 10 degrees within the device.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct observation of optical near field in nanophotonics devices at the nanoscale using Scanning Thermal Microscopy

Meir Grajower, Boris Desiatov, Ilya Goykhman, Liron Stern, Noa Mazurski, and Uriel Levy
Opt. Express 23(21) 27763-27775 (2015)

Silicon nanophotonic devices for chip-scale optical communication applications [Invited]

Y. Fainman, M. P. Nezhad, D. T. H. Tan, K. Ikeda, O. Bondarenko, and A. Grieco
Appl. Opt. 52(4) 613-624 (2013)

Time-domain measurement of optical transport in silicon micro-ring resonators

Wolfram H. P. Pernice, Mo Li, and Hong X. Tang
Opt. Express 18(17) 18438-18452 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Y. Joshi and P. Kumar, Energy Efficient Thermal Management of Data Centers (Springer, 2012).
  2. M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
    [Crossref]
  3. D. A. B. Miller, “Optical interconnects to electronic chips,” Appl. Opt. 49(25), F59–F70 (2010).
    [Crossref] [PubMed]
  4. P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Low power and high density optical interconnects for future supercomputers,” in Optical Fiber Communication Conference (OFC2010), paper OThX2.
    [Crossref]
  5. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  6. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15(8), 4474–4484 (2007).
    [Crossref] [PubMed]
  7. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  8. V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” J. Nanophotonics 1, 17–22 (2012).
  9. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  10. S. Li, N. G. Tarr, and P. Berini, “Schottky photodetector integration on LOCOS-defined SOI waveguides,” Proc. SPIE 7750, 77501M (2010).
    [Crossref]
  11. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
    [Crossref] [PubMed]
  12. S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
    [Crossref]
  13. D. Cahill, K. Goodson, and A. Majumdar, “Thermometry and thermal transport in micro/nanoscale solid-state devices and structures,” J. Heat Transfer 124(2), 223–241 (2002).
    [Crossref]
  14. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
    [Crossref]
  15. L. Shi and A. Majumdar, “Thermal transport mechanisms at nanoscale point contacts,” J. Heat Transfer 124(2), 329–337 (2002).
    [Crossref]
  16. S. Sadat, A. Tan, Y. J. Chua, and P. Reddy, “Nanoscale thermometry using point contact thermocouples,” Nano Lett. 10(7), 2613–2617 (2010).
    [Crossref] [PubMed]
  17. G. Wielgoszewski, P. Sulecki, P. Janus, P. Grabiec, E. Zschech, and T. Gotszalk, “A high-resolution measurement system for novel scanning thermal microscopy resistive nanoprobes,” Meas. Sci. Technol. 22(9), 094023 (2011).
    [Crossref]
  18. M. E. McConney, D. D. Kulkarni, H. Jiang, T. J. Bunning, and V. V. Tsukruk, “A new twist on scanning thermal microscopy,” Nano Lett. 12(3), 1218–1223 (2012).
    [Crossref] [PubMed]
  19. K. Kim, W. Jeong, W. Lee, and P. Reddy, “Ultra-High vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry,” ACS Nano 6(5), 4248–4257 (2012).
    [Crossref] [PubMed]
  20. K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air,” ACS Nano 5(11), 8700–8709 (2011).
    [Crossref] [PubMed]
  21. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010).
    [Crossref] [PubMed]
  22. D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fédéli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Express 18(18), 19064–19069 (2010).
    [Crossref] [PubMed]
  23. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  24. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
    [Crossref]
  25. J. W. Park, J.-B. You, I. G. Kim, and G. Kim, “High-modulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a PN Diode,” Opt. Express 17(18), 15520–15524 (2009).
    [Crossref] [PubMed]
  26. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
    [Crossref] [PubMed]
  27. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  28. J. E. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).
  29. M. Abashin, U. Levy, K. Ikeda, and Y. Fainman, “Effects produced by metal-coated near-field probes on the performance of silicon waveguides and resonators,” Opt. Lett. 32(17), 2602–2604 (2007).
    [Crossref] [PubMed]
  30. B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-Field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
    [Crossref] [PubMed]
  31. M. C. Salvadori, A. R. Vaz, F. S. Teixeira, M. Cattani, and I. G. Brown, “Thermoelectric effect in very thin film Pt/Au thermocouples,” Appl. Phys. Lett. 88(13), 133106 (2006).
    [Crossref]
  32. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).
  33. X. Zheng, Y. Luo, G. Li, I. Shubin, H. Thacker, J. Yao, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Enhanced optical bistability from self-heating due to free carrier absorption in substrate removed silicon ring modulators,” Opt. Express 20(10), 11478–11486 (2012).
    [Crossref] [PubMed]
  34. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, p. CPDB10 (2009).
    [Crossref]
  35. L. W. Luo, G. S. Wiederhecker, K. Preston, and M. Lipson, “Power insensitive silicon microring resonators,” Opt. Lett. 37(4), 590–592 (2012).
    [Crossref] [PubMed]
  36. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [Crossref]

2012 (6)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” J. Nanophotonics 1, 17–22 (2012).

M. E. McConney, D. D. Kulkarni, H. Jiang, T. J. Bunning, and V. V. Tsukruk, “A new twist on scanning thermal microscopy,” Nano Lett. 12(3), 1218–1223 (2012).
[Crossref] [PubMed]

K. Kim, W. Jeong, W. Lee, and P. Reddy, “Ultra-High vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry,” ACS Nano 6(5), 4248–4257 (2012).
[Crossref] [PubMed]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-Field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

L. W. Luo, G. S. Wiederhecker, K. Preston, and M. Lipson, “Power insensitive silicon microring resonators,” Opt. Lett. 37(4), 590–592 (2012).
[Crossref] [PubMed]

X. Zheng, Y. Luo, G. Li, I. Shubin, H. Thacker, J. Yao, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Enhanced optical bistability from self-heating due to free carrier absorption in substrate removed silicon ring modulators,” Opt. Express 20(10), 11478–11486 (2012).
[Crossref] [PubMed]

2011 (4)

G. Wielgoszewski, P. Sulecki, P. Janus, P. Grabiec, E. Zschech, and T. Gotszalk, “A high-resolution measurement system for novel scanning thermal microscopy resistive nanoprobes,” Meas. Sci. Technol. 22(9), 094023 (2011).
[Crossref]

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

2010 (8)

S. Li, N. G. Tarr, and P. Berini, “Schottky photodetector integration on LOCOS-defined SOI waveguides,” Proc. SPIE 7750, 77501M (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

S. Sadat, A. Tan, Y. J. Chua, and P. Reddy, “Nanoscale thermometry using point contact thermocouples,” Nano Lett. 10(7), 2613–2617 (2010).
[Crossref] [PubMed]

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
[Crossref]

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010).
[Crossref] [PubMed]

D. A. B. Miller, “Optical interconnects to electronic chips,” Appl. Opt. 49(25), F59–F70 (2010).
[Crossref] [PubMed]

D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fédéli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Express 18(18), 19064–19069 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (2)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

2007 (2)

2006 (2)

M. C. Salvadori, A. R. Vaz, F. S. Teixeira, M. Cattani, and I. G. Brown, “Thermoelectric effect in very thin film Pt/Au thermocouples,” Appl. Phys. Lett. 88(13), 133106 (2006).
[Crossref]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

2003 (1)

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

2002 (2)

L. Shi and A. Majumdar, “Thermal transport mechanisms at nanoscale point contacts,” J. Heat Transfer 124(2), 329–337 (2002).
[Crossref]

D. Cahill, K. Goodson, and A. Majumdar, “Thermometry and thermal transport in micro/nanoscale solid-state devices and structures,” J. Heat Transfer 124(2), 223–241 (2002).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Abashin, M.

Amberg, P.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Basak, J.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Berini, P.

S. Li, N. G. Tarr, and P. Berini, “Schottky photodetector integration on LOCOS-defined SOI waveguides,” Proc. SPIE 7750, 77501M (2010).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Brown, I. G.

M. C. Salvadori, A. R. Vaz, F. S. Teixeira, M. Cattani, and I. G. Brown, “Thermoelectric effect in very thin film Pt/Au thermocouples,” Appl. Phys. Lett. 88(13), 133106 (2006).
[Crossref]

Bunning, T. J.

M. E. McConney, D. D. Kulkarni, H. Jiang, T. J. Bunning, and V. V. Tsukruk, “A new twist on scanning thermal microscopy,” Nano Lett. 12(3), 1218–1223 (2012).
[Crossref] [PubMed]

Cahill, D.

D. Cahill, K. Goodson, and A. Majumdar, “Thermometry and thermal transport in micro/nanoscale solid-state devices and structures,” J. Heat Transfer 124(2), 223–241 (2002).
[Crossref]

Cahill, D. G.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cattani, M.

M. C. Salvadori, A. R. Vaz, F. S. Teixeira, M. Cattani, and I. G. Brown, “Thermoelectric effect in very thin film Pt/Au thermocouples,” Appl. Phys. Lett. 88(13), 133106 (2006).
[Crossref]

Chetrit, Y.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Chua, Y. J.

S. Sadat, A. Tan, Y. J. Chua, and P. Reddy, “Nanoscale thermometry using point contact thermocouples,” Nano Lett. 10(7), 2613–2617 (2010).
[Crossref] [PubMed]

Chung, J.

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

Conway, J. A.

Cunningham, J. E.

Desiatov, B.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Fainman, Y.

Fan, S.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-Field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Fédéli, J.-M.

Ford, W. K.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Gardes, F. Y.

Goodson, K.

D. Cahill, K. Goodson, and A. Majumdar, “Thermometry and thermal transport in micro/nanoscale solid-state devices and structures,” J. Heat Transfer 124(2), 223–241 (2002).
[Crossref]

Goodson, K. E.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Gotszalk, T.

G. Wielgoszewski, P. Sulecki, P. Janus, P. Grabiec, E. Zschech, and T. Gotszalk, “A high-resolution measurement system for novel scanning thermal microscopy resistive nanoprobes,” Meas. Sci. Technol. 22(9), 094023 (2011).
[Crossref]

Goykhman, I.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Grabiec, P.

G. Wielgoszewski, P. Sulecki, P. Janus, P. Grabiec, E. Zschech, and T. Gotszalk, “A high-resolution measurement system for novel scanning thermal microscopy resistive nanoprobes,” Meas. Sci. Technol. 22(9), 094023 (2011).
[Crossref]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

Guha, B.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-Field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Ho, R.

Hwang, G.

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

Ikeda, K.

Janus, P.

G. Wielgoszewski, P. Sulecki, P. Janus, P. Grabiec, E. Zschech, and T. Gotszalk, “A high-resolution measurement system for novel scanning thermal microscopy resistive nanoprobes,” Meas. Sci. Technol. 22(9), 094023 (2011).
[Crossref]

Jeong, W.

K. Kim, W. Jeong, W. Lee, and P. Reddy, “Ultra-High vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry,” ACS Nano 6(5), 4248–4257 (2012).
[Crossref] [PubMed]

Jiang, H.

M. E. McConney, D. D. Kulkarni, H. Jiang, T. J. Bunning, and V. V. Tsukruk, “A new twist on scanning thermal microscopy,” Nano Lett. 12(3), 1218–1223 (2012).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Khurgin, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Kim, G.

Kim, I. G.

Kim, K.

K. Kim, W. Jeong, W. Lee, and P. Reddy, “Ultra-High vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry,” ACS Nano 6(5), 4248–4257 (2012).
[Crossref] [PubMed]

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Krishnamoorthy, A. V.

Kulkarni, D. D.

M. E. McConney, D. D. Kulkarni, H. Jiang, T. J. Bunning, and V. V. Tsukruk, “A new twist on scanning thermal microscopy,” Nano Lett. 12(3), 1218–1223 (2012).
[Crossref] [PubMed]

Kuramochi, E.

Kwon, O.

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

Kwong, D. L.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” J. Nanophotonics 1, 17–22 (2012).

Lee, J. S.

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

Lee, W.

K. Kim, W. Jeong, W. Lee, and P. Reddy, “Ultra-High vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry,” ACS Nano 6(5), 4248–4257 (2012).
[Crossref] [PubMed]

Levy, U.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

M. Abashin, U. Levy, K. Ikeda, and Y. Fainman, “Effects produced by metal-coated near-field probes on the performance of silicon waveguides and resonators,” Opt. Lett. 32(17), 2602–2604 (2007).
[Crossref] [PubMed]

Lexau, J.

Li, G.

Li, S.

S. Li, N. G. Tarr, and P. Berini, “Schottky photodetector integration on LOCOS-defined SOI waveguides,” Proc. SPIE 7750, 77501M (2010).
[Crossref]

Liao, L.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Lipson, M.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-Field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

L. W. Luo, G. S. Wiederhecker, K. Preston, and M. Lipson, “Power insensitive silicon microring resonators,” Opt. Lett. 37(4), 590–592 (2012).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Liu, A.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Lo, G. Q.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

Luo, L. W.

Luo, Y.

Ma, R.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” J. Nanophotonics 1, 17–22 (2012).

Mahan, G. D.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Majumdar, A.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

D. Cahill, K. Goodson, and A. Majumdar, “Thermometry and thermal transport in micro/nanoscale solid-state devices and structures,” J. Heat Transfer 124(2), 223–241 (2002).
[Crossref]

L. Shi and A. Majumdar, “Thermal transport mechanisms at nanoscale point contacts,” J. Heat Transfer 124(2), 329–337 (2002).
[Crossref]

Maris, H. J.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

McConney, M. E.

M. E. McConney, D. D. Kulkarni, H. Jiang, T. J. Bunning, and V. V. Tsukruk, “A new twist on scanning thermal microscopy,” Nano Lett. 12(3), 1218–1223 (2012).
[Crossref] [PubMed]

Mekis, A.

Merlin, R.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Milesi, F.

Miller, D. A. B.

Nguyen, H.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Nishiguchi, K.

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Notomi, M.

Otey, C.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-Field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Paniccia, M.

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
[Crossref]

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Park, J. W.

Phillpot, S. R.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Pinckney, N.

Pinguet, T.

Poitras, C. B.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-Field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Preston, K.

Raj, K.

Reddy, P.

K. Kim, W. Jeong, W. Lee, and P. Reddy, “Ultra-High vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry,” ACS Nano 6(5), 4248–4257 (2012).
[Crossref] [PubMed]

S. Sadat, A. Tan, Y. J. Chua, and P. Reddy, “Nanoscale thermometry using point contact thermocouples,” Nano Lett. 10(7), 2613–2617 (2010).
[Crossref] [PubMed]

Reed, G. T.

Rubin, D.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

Sadat, S.

S. Sadat, A. Tan, Y. J. Chua, and P. Reddy, “Nanoscale thermometry using point contact thermocouples,” Nano Lett. 10(7), 2613–2617 (2010).
[Crossref] [PubMed]

Sahni, S.

Salvadori, M. C.

M. C. Salvadori, A. R. Vaz, F. S. Teixeira, M. Cattani, and I. G. Brown, “Thermoelectric effect in very thin film Pt/Au thermocouples,” Appl. Phys. Lett. 88(13), 133106 (2006).
[Crossref]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Shappir, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

Shi, J.

Shi, L.

L. Shi and A. Majumdar, “Thermal transport mechanisms at nanoscale point contacts,” J. Heat Transfer 124(2), 329–337 (2002).
[Crossref]

Shubin, I.

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Sorger, V. J.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” J. Nanophotonics 1, 17–22 (2012).

Sulecki, P.

G. Wielgoszewski, P. Sulecki, P. Janus, P. Grabiec, E. Zschech, and T. Gotszalk, “A high-resolution measurement system for novel scanning thermal microscopy resistive nanoprobes,” Meas. Sci. Technol. 22(9), 094023 (2011).
[Crossref]

Szkopek, T.

Tan, A.

S. Sadat, A. Tan, Y. J. Chua, and P. Reddy, “Nanoscale thermometry using point contact thermocouples,” Nano Lett. 10(7), 2613–2617 (2010).
[Crossref] [PubMed]

Tanabe, T.

Tarr, N. G.

S. Li, N. G. Tarr, and P. Berini, “Schottky photodetector integration on LOCOS-defined SOI waveguides,” Proc. SPIE 7750, 77501M (2010).
[Crossref]

Teixeira, F. S.

M. C. Salvadori, A. R. Vaz, F. S. Teixeira, M. Cattani, and I. G. Brown, “Thermoelectric effect in very thin film Pt/Au thermocouples,” Appl. Phys. Lett. 88(13), 133106 (2006).
[Crossref]

Thacker, H.

Thomson, D. J.

Tsukruk, V. V.

M. E. McConney, D. D. Kulkarni, H. Jiang, T. J. Bunning, and V. V. Tsukruk, “A new twist on scanning thermal microscopy,” Nano Lett. 12(3), 1218–1223 (2012).
[Crossref] [PubMed]

Vaz, A. R.

M. C. Salvadori, A. R. Vaz, F. S. Teixeira, M. Cattani, and I. G. Brown, “Thermoelectric effect in very thin film Pt/Au thermocouples,” Appl. Phys. Lett. 88(13), 133106 (2006).
[Crossref]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wiederhecker, G. S.

Wielgoszewski, G.

G. Wielgoszewski, P. Sulecki, P. Janus, P. Grabiec, E. Zschech, and T. Gotszalk, “A high-resolution measurement system for novel scanning thermal microscopy resistive nanoprobes,” Meas. Sci. Technol. 22(9), 094023 (2011).
[Crossref]

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Yao, J.

You, J.-B.

Yu, M. B.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” J. Nanophotonics 1, 17–22 (2012).

Zheng, X.

Zhu, S.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

Zschech, E.

G. Wielgoszewski, P. Sulecki, P. Janus, P. Grabiec, E. Zschech, and T. Gotszalk, “A high-resolution measurement system for novel scanning thermal microscopy resistive nanoprobes,” Meas. Sci. Technol. 22(9), 094023 (2011).
[Crossref]

ACS Nano (2)

K. Kim, W. Jeong, W. Lee, and P. Reddy, “Ultra-High vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry,” ACS Nano 6(5), 4248–4257 (2012).
[Crossref] [PubMed]

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

M. C. Salvadori, A. R. Vaz, F. S. Teixeira, M. Cattani, and I. G. Brown, “Thermoelectric effect in very thin film Pt/Au thermocouples,” Appl. Phys. Lett. 88(13), 133106 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[Crossref]

J. Appl. Phys. (1)

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

J. Heat Transfer (2)

L. Shi and A. Majumdar, “Thermal transport mechanisms at nanoscale point contacts,” J. Heat Transfer 124(2), 329–337 (2002).
[Crossref]

D. Cahill, K. Goodson, and A. Majumdar, “Thermometry and thermal transport in micro/nanoscale solid-state devices and structures,” J. Heat Transfer 124(2), 223–241 (2002).
[Crossref]

J. Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” J. Nanophotonics 1, 17–22 (2012).

Meas. Sci. Technol. (1)

G. Wielgoszewski, P. Sulecki, P. Janus, P. Grabiec, E. Zschech, and T. Gotszalk, “A high-resolution measurement system for novel scanning thermal microscopy resistive nanoprobes,” Meas. Sci. Technol. 22(9), 094023 (2011).
[Crossref]

Nano Lett. (4)

M. E. McConney, D. D. Kulkarni, H. Jiang, T. J. Bunning, and V. V. Tsukruk, “A new twist on scanning thermal microscopy,” Nano Lett. 12(3), 1218–1223 (2012).
[Crossref] [PubMed]

S. Sadat, A. Tan, Y. J. Chua, and P. Reddy, “Nanoscale thermometry using point contact thermocouples,” Nano Lett. 10(7), 2613–2617 (2010).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[Crossref] [PubMed]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-Field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
[Crossref]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (1)

S. Li, N. G. Tarr, and P. Berini, “Schottky photodetector integration on LOCOS-defined SOI waveguides,” Proc. SPIE 7750, 77501M (2010).
[Crossref]

Science (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Other (5)

Y. Joshi and P. Kumar, Energy Efficient Thermal Management of Data Centers (Springer, 2012).

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Low power and high density optical interconnects for future supercomputers,” in Optical Fiber Communication Conference (OFC2010), paper OThX2.
[Crossref]

J. E. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, p. CPDB10 (2009).
[Crossref]

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic representation of the experimental setup for the simultaneous thermal and optical transmission measurement.
Fig. 2
Fig. 2 (a) Top view SEM image of the measured silicon micro ring resonator (b) Measured transmission spectrum of the device (c) Schematic cross section diagram of the silicon waveguide (d) Lorentzian fit to a single resonance dip used for obtaining the resonator’s quality factor.
Fig. 3
Fig. 3 Thermal images of the doped silicon MRR (a) in-resonance (b) out-of-resonance and (c) with no optical signal (laser turned off). (d) Cross section of the thermal signal over the ring waveguide (e) Cross section of the thermal signal along the bus waveguide. The cross section direction is shown in the inset. (f) A thermal image of the un-doped silicon MRR in resonance. The green wide lines in Figs. 3(d) and 3(e) show the location of the cross section in the image.
Fig. 4
Fig. 4 Images (a)-(c) show thermal scans of the doped silicon MRR with increasing input optical power. Pring, the optical power inside the ring, was calculated from the resonator’s buildup factor and is indicated in each scan. (d) Linear fit for the thermal signal as a function of the change in the input optical power. Error bar was calculated from the difference between several thermal measurements.
Fig. 5
Fig. 5 (a) Topography, (b) optical transmission and (c) thermal images taken from a single scan. The blue lines in each of these panels represent the cross section which is shown in (d). The perturbation of the tip to the resonance is apparent from the change in optical transmission which closely follows the topography profile. The decrease in temperature is inversely correlated to the perturbation of the tip.
Fig. 6
Fig. 6 (a) Simulation and measurement results of the temperature profile in a cross section of the ring waveguide. The dashed black line and the solid blue line represent measurement results before and after calibration, respectively. The dashed (solid) red line represents simulation results without (with) consideration of the tip effect. The simulation results were obtained for 113mW of optical power in the ring and 1% loss to heat. (b) The original thermal scan with the taken cross section marked in blue line. (c) 2D simulation showing a cross section of the optical intensity profile of the first TE mode (d) 2D simulation showing a cross section of the temperature distribution as a result of light absorption in the waveguide.

Metrics