Abstract

We investigated phase-noise characteristics of both a phase/intensity-modulated laser with 25-GHz mode spacing and a mode-locked fiber laser with carrier-envelope-offset (CEO) locking. As the separation from the frequency of the continuous wave (CW) laser diode (LD) for a seed light source increases, the integrated phase noise of each comb mode of both the phase/intensity-modulated laser and supercontinuum light originating from it increases with the same slope as a function of mode number. The dependence of the integrated phase noise on mode number with the phase/intensity-modulated laser is much larger than with the mode-locked fiber laser of the CEO locking. However, the phase noise of the phase/intensity-modulated laser is extremely lower than that of the mode-locked fiber laser with CEO locking in the frequency region around the CW LD. The phase noise of the phase/intensity-modulated laser with 25-GHz mode spacing and that of the mode-locked fiber laser with the CEO locking could be estimated and were found to be almost the same at the wavelengths required in an f-to-2f self-referencing interferometer. Our experimental results indicate the possibility of achieving an offset-frequency-locked frequency comb with the phase/intensity-modulated laser.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  2. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
    [CrossRef] [PubMed]
  3. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3(6), 381–387 (2007).
    [CrossRef]
  4. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
    [CrossRef] [PubMed]
  5. D. C. Heinecke, A. Barteles, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
    [CrossRef]
  6. A. Mizutori, S. Y. Set, F. Shirazawa, and M. Koga, “Stable Costas homodyne detection for 20-Gbi/s QPSK signal fiber transmission,” in European Conference on Optical Communications (ECOC), Mo. 4. C. 1 (2013).
  7. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250-fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett.46(19), 1343–1344 (2010).
    [CrossRef]
  8. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
    [CrossRef] [PubMed]
  9. J. -L. Peng, T. -A. Liu, and R. -H. Shu, “Octave-spanning fiber laser comb with 300 MHz comb spacing for optical frequency metrology,” in Conference on Lasers and Electro-optics (CLEO), Baltimore, MD, May 2009, paper CtuK3.
  10. A. Ishizawa, T. Nishikawa, S. Aozasa, A. Mori, O. Tadanaga, M. Asobe, and H. Nakano, “Demonstration of carrier envelope offset locking with low pulse energy,” Opt. Express16(7), 4706–4712 (2008).
    [CrossRef] [PubMed]
  11. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron.24(2), 382–387 (1988).
    [CrossRef]
  12. T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron.2(3), 643–649 (1996).
    [CrossRef]
  13. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a Mach-Zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett.34(15), 2297–2299 (2009).
    [CrossRef] [PubMed]
  14. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express19(23), 22402–22409 (2011).
    [CrossRef] [PubMed]
  15. A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron.19(6), 3500306 (2013).
    [CrossRef]
  16. A. Mizutori, A. Kodama, and M. Koga, “Phase-synchronous chain of two multi-carrier lights spaced at 25 GHz by cancelling micro-wave phase noise,” in IEEE International Topical Meeting on Microwave Photonics, Singapore, Oct 2011, paper 2228.
  17. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett.15(23), 1351–1353 (1990).
    [CrossRef] [PubMed]

2013 (1)

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron.19(6), 3500306 (2013).
[CrossRef]

2011 (1)

2010 (1)

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250-fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett.46(19), 1343–1344 (2010).
[CrossRef]

2009 (3)

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

D. C. Heinecke, A. Barteles, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a Mach-Zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett.34(15), 2297–2299 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Ishizawa, T. Nishikawa, S. Aozasa, A. Mori, O. Tadanaga, M. Asobe, and H. Nakano, “Demonstration of carrier envelope offset locking with low pulse energy,” Opt. Express16(7), 4706–4712 (2008).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

2007 (1)

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3(6), 381–387 (2007).
[CrossRef]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

2001 (1)

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

1996 (1)

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron.2(3), 643–649 (1996).
[CrossRef]

1990 (1)

1988 (1)

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron.24(2), 382–387 (1988).
[CrossRef]

Amano, K.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron.24(2), 382–387 (1988).
[CrossRef]

Aozasa, S.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250-fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett.46(19), 1343–1344 (2010).
[CrossRef]

A. Ishizawa, T. Nishikawa, S. Aozasa, A. Mori, O. Tadanaga, M. Asobe, and H. Nakano, “Demonstration of carrier envelope offset locking with low pulse energy,” Opt. Express16(7), 4706–4712 (2008).
[CrossRef] [PubMed]

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Asobe, M.

Barteles, A.

D. C. Heinecke, A. Barteles, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

Bergquist, J. C.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Braje, D. A.

D. C. Heinecke, A. Barteles, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

Corkum, P. B.

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3(6), 381–387 (2007).
[CrossRef]

Curtis, E. A.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Diddams, S. A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

D. C. Heinecke, A. Barteles, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Drullinger, R. E.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Fortier, T. M.

D. C. Heinecke, A. Barteles, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

Fukushima, Y.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron.24(2), 382–387 (1988).
[CrossRef]

Gordon, J. P.

Hänsch, T. W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

Heinecke, D. C.

D. C. Heinecke, A. Barteles, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

Hollberg, L.

D. C. Heinecke, A. Barteles, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Holzwarth, R.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hosako, I.

Ishizawa, A.

Itano, W. M.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Kawanishi, T.

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Kobayashi, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron.24(2), 382–387 (1988).
[CrossRef]

Koga, M.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express19(23), 22402–22409 (2011).
[CrossRef] [PubMed]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250-fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett.46(19), 1343–1344 (2010).
[CrossRef]

Krausz, F.

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3(6), 381–387 (2007).
[CrossRef]

Leaird, D. E.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron.19(6), 3500306 (2013).
[CrossRef]

Lee, W. D.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Metcalf, A. J.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron.19(6), 3500306 (2013).
[CrossRef]

Mizutori, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express19(23), 22402–22409 (2011).
[CrossRef] [PubMed]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250-fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett.46(19), 1343–1344 (2010).
[CrossRef]

Mollenauer, L. F.

Mori, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250-fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett.46(19), 1343–1344 (2010).
[CrossRef]

A. Ishizawa, T. Nishikawa, S. Aozasa, A. Mori, O. Tadanaga, M. Asobe, and H. Nakano, “Demonstration of carrier envelope offset locking with low pulse energy,” Opt. Express16(7), 4706–4712 (2008).
[CrossRef] [PubMed]

Morimoto, A.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron.24(2), 382–387 (1988).
[CrossRef]

Morohashi, I.

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Nagatsuma, T.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron.2(3), 643–649 (1996).
[CrossRef]

Nakano, H.

Nishikawa, T.

Oates, C. W.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Otsuji, T.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron.2(3), 643–649 (1996).
[CrossRef]

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Sakamoto, T.

Sano, E.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron.2(3), 643–649 (1996).
[CrossRef]

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Sogawa, T.

Sotobayashi, H.

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Sueta, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron.24(2), 382–387 (1988).
[CrossRef]

Tadanaga, O.

Takada, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express19(23), 22402–22409 (2011).
[CrossRef] [PubMed]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250-fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett.46(19), 1343–1344 (2010).
[CrossRef]

Takara, H.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express19(23), 22402–22409 (2011).
[CrossRef] [PubMed]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250-fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett.46(19), 1343–1344 (2010).
[CrossRef]

Torres-Company, V.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron.19(6), 3500306 (2013).
[CrossRef]

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Vogel, K. R.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Weiner, A. M.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron.19(6), 3500306 (2013).
[CrossRef]

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Wineland, D. J.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Yaita, M.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron.2(3), 643–649 (1996).
[CrossRef]

Yao, H.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron.24(2), 382–387 (1988).
[CrossRef]

Electron. Lett. (1)

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250-fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett.46(19), 1343–1344 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron.24(2), 382–387 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron.2(3), 643–649 (1996).
[CrossRef]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron.19(6), 3500306 (2013).
[CrossRef]

Nat. Phys. (1)

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3(6), 381–387 (2007).
[CrossRef]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

D. C. Heinecke, A. Barteles, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

Science (3)

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Other (3)

J. -L. Peng, T. -A. Liu, and R. -H. Shu, “Octave-spanning fiber laser comb with 300 MHz comb spacing for optical frequency metrology,” in Conference on Lasers and Electro-optics (CLEO), Baltimore, MD, May 2009, paper CtuK3.

A. Mizutori, S. Y. Set, F. Shirazawa, and M. Koga, “Stable Costas homodyne detection for 20-Gbi/s QPSK signal fiber transmission,” in European Conference on Optical Communications (ECOC), Mo. 4. C. 1 (2013).

A. Mizutori, A. Kodama, and M. Koga, “Phase-synchronous chain of two multi-carrier lights spaced at 25 GHz by cancelling micro-wave phase noise,” in IEEE International Topical Meeting on Microwave Photonics, Singapore, Oct 2011, paper 2228.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup for measuring the phase-noise characteristics of an optical frequency comb with 25-GHz mode spacing. LD: laser diode. SMF: single-mode fiber. OC: optical coupler. PD: photodetector. (b) Experimental and (c) calculated optical spectrum of an optical frequency comb with 25-GHz mode spacing. (d) Phase-noise characteristic of eternal RF synthesizer C.

Fig. 2
Fig. 2

(a) The beat note obtained by third mode of the spectral lines generated from the CW LD and a tunable laser. (b) The beat note obtained by the 38th mode of the spectral lines and the tunable laser.

Fig. 3
Fig. 3

(a) Phase-noise characteristics when using external RF synthesizer B. The inset shows the phase-noise characteristics at the offset frequency of more than 1 MHz. (b) Dependence of integrated phase noise on the external RF synthesizer.

Fig. 4
Fig. 4

(a) Experimental setup for measuring the phase-noise characteristics of supercontinuum (SC) light generated by the 25-GHz-spaced OFC. LD: laser diode. SMF: single-mode fiber. EDFA: erbium-doped fiber amplifier. HNLF: highly nonlinear fiber. OC: optical coupler. PD: photodetector. (b) Spectrum before (red) and after (blue) the SC generation.

Fig. 5
Fig. 5

(a) Dependence of the integrated phase noise on mode number with the SC light generated by the phase/intensity-modulated laser. (b) Phase-noise characteristics in the zeroth mode before and after the SC generation and in the 114th and 139th mode after the SC generation. (c) Dependence of the integrated noise on mode number with the carrier-envelope-offset (CEO)-locked fiber laser. (d) Speculated the integrated noise with the phase/intensity-modulated laser and the CEO-locked fiber laser at the wavelength (mode number: 3277 and 2269) for measuring the CEO frequency signal in the f-to-2f self-referencing interferometer (SRI) and the 2f-to-3f SRI.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E k ( t )= E 0 n= [ J n ( m IM ) J kn ( m PM )×exp{i( 2π f s t+k(2π f m tΨ(t)) ϕ k )} ] ,
θ k =2π f s t+k(2π f m tΨ(t)) ϕ k
f k = 1 2π d θ k dt = f s +k( f m 1 2π dΨ(t) dt ).
Δ f k =| f k ( f s +k f m ) |= 1 2π | dΨ(t) dt |k.
Integrated phase noise= 1 2π f c 2 t 1 =1MHz t 2 =40MHz 10 L(f) 10 df,

Metrics