Abstract

We propose an all-fiber-based multi-channel optical scheme that enables simultaneous generation of multiple continuous-wave laser wavelengths with stabilization to the frequency comb of a femtosecond laser. The intention is to produce highly stable, accurate wavelength channels with immunity to environmental disturbance so as to enhance the transmission capacity of dense wavelength division multiplexing (DWDM) communications. Generated wavelengths lie over a wide spectral range of 5 THz about 1550 nm, each yielding a narrow linewidth of less than 24 kHz with an absolute position uncertainty of ~2.24 × 10−12 (10 s averaging) traceable directly to the atomic Rb clock.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of the performance of a fiber-based frequency comb by referencing to an acetylene-stabilized fiber laser

Thomas Talvard, Philip G. Westergaard, Michael V. DePalatis, Nicolai F. Mortensen, Michael Drewsen, Bjarke Gøth, and Jan Hald
Opt. Express 25(3) 2259-2269 (2017)

Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser

Guochao Wang, Yoon-Soo Jang, Sangwon Hyun, Byung Jae Chun, Hyun Jay Kang, Shuhua Yan, Seung-Woo Kim, and Young-Jin Kim
Opt. Express 23(7) 9121-9129 (2015)

All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser

Young-Jin Kim, Yunseok Kim, Byung Jae Chun, Sangwon Hyun, and Seung-Woo Kim
Opt. Express 17(13) 10939-10945 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag. 43(2), 80–87 (2005).
    [Crossref]
  2. J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
    [Crossref]
  3. M. C. Nuss, W. H. Knox, and U. Koren, “Scalable 32 channel chirped-pulse WDM source,” Electron. Lett. 32(14), 1311–1312 (1996).
    [Crossref]
  4. D. Le Guen, S. Lobo, F. Merlaud, L. Billes, and T. Georges, “25 GHz spacing DWDM soliton transmission over 2000 km of SMF with 25 dB/span,” in Proceedings of 27th European Conference Optical Communications (ECOC, 2001), pp. 244–245.
    [Crossref]
  5. E. Yamada, H. Takara, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106 channel× 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source,” Electron. Lett. 37(25), 1534–1536 (2001).
    [Crossref]
  6. S. Chandrasekhar and X. Liu, “Impact of channel plan and dispersion map on hybrid DWDM transmission of 42.7-Gb/s DQPSK and 10.7-Gb/s OOK on 50-GHz grid,” IEEE Photonics Technol. Lett. 19(22), 1801–1803 (2007).
    [Crossref]
  7. H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photonics Technol. Lett. 12(8), 1067–1069 (2000).
    [Crossref]
  8. H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and tilted waveguides,” IEEE J. Quantum Electron. 40(10), 1377–1383 (2004).
    [Crossref]
  9. M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OtuM2.
    [Crossref]
  10. D. Chen, S. Qin, and S. He, “Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbium-doped fiber gains,” Opt. Express 15(3), 930–935 (2007).
    [Crossref] [PubMed]
  11. S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photonics Technol. Lett. 11(5), 551–553 (1999).
    [Crossref]
  12. Y.-J. Kim, B. J. Chun, Y. Kim, S. Hyun, and S.-W. Kim, “Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication,” Laser Phys. Lett. 7(7), 522–527 (2010).
    [Crossref]
  13. “Spectral grids for WDM applications: DWDM frequency grid,” International Telecommunication Union Std. ITU-T G.694.1 (2012).
  14. A. E. Siegman, Lasers (University Science, 1986).
  15. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
    [Crossref] [PubMed]
  16. Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
    [Crossref] [PubMed]
  17. Y. Kim, Y.-J. Kim, S. Kim, and S.-W. Kim, “Er-doped fiber comb with enhanced fceo S/N ratio using Tm:Ho-doped fiber,” Opt. Express 17(21), 18606–18611 (2009).
    [Crossref] [PubMed]
  18. N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
    [Crossref]
  19. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
    [Crossref] [PubMed]

2010 (1)

Y.-J. Kim, B. J. Chun, Y. Kim, S. Hyun, and S.-W. Kim, “Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication,” Laser Phys. Lett. 7(7), 522–527 (2010).
[Crossref]

2009 (2)

2008 (1)

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

2007 (3)

2005 (1)

R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag. 43(2), 80–87 (2005).
[Crossref]

2004 (3)

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
[Crossref]

H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and tilted waveguides,” IEEE J. Quantum Electron. 40(10), 1377–1383 (2004).
[Crossref]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[Crossref] [PubMed]

2001 (1)

E. Yamada, H. Takara, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106 channel× 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source,” Electron. Lett. 37(25), 1534–1536 (2001).
[Crossref]

2000 (1)

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photonics Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

1999 (1)

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photonics Technol. Lett. 11(5), 551–553 (1999).
[Crossref]

1996 (1)

M. C. Nuss, W. H. Knox, and U. Koren, “Scalable 32 channel chirped-pulse WDM source,” Electron. Lett. 32(14), 1311–1312 (1996).
[Crossref]

Arcizet, O.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Bennett, S.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photonics Technol. Lett. 11(5), 551–553 (1999).
[Crossref]

Billes, L.

D. Le Guen, S. Lobo, F. Merlaud, L. Billes, and T. Georges, “25 GHz spacing DWDM soliton transmission over 2000 km of SMF with 25 dB/span,” in Proceedings of 27th European Conference Optical Communications (ECOC, 2001), pp. 244–245.
[Crossref]

Burr, E.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photonics Technol. Lett. 11(5), 551–553 (1999).
[Crossref]

Cai, B.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photonics Technol. Lett. 11(5), 551–553 (1999).
[Crossref]

Chandrasekhar, S.

S. Chandrasekhar and X. Liu, “Impact of channel plan and dispersion map on hybrid DWDM transmission of 42.7-Gb/s DQPSK and 10.7-Gb/s OOK on 50-GHz grid,” IEEE Photonics Technol. Lett. 19(22), 1801–1803 (2007).
[Crossref]

Chen, D.

Chun, B. J.

Y.-J. Kim, B. J. Chun, Y. Kim, S. Hyun, and S.-W. Kim, “Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication,” Laser Phys. Lett. 7(7), 522–527 (2010).
[Crossref]

Del’Haye, P.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Diddams, S. A.

Fallnich, C.

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
[Crossref]

Georges, T.

D. Le Guen, S. Lobo, F. Merlaud, L. Billes, and T. Georges, “25 GHz spacing DWDM soliton transmission over 2000 km of SMF with 25 dB/span,” in Proceedings of 27th European Conference Optical Communications (ECOC, 2001), pp. 244–245.
[Crossref]

Gough, O.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photonics Technol. Lett. 11(5), 551–553 (1999).
[Crossref]

Haverkamp, N.

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
[Crossref]

He, S.

Hillmer, H.

H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and tilted waveguides,” IEEE J. Quantum Electron. 40(10), 1377–1383 (2004).
[Crossref]

Holzwarth, R.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Hundertmark, H.

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
[Crossref]

Hussein, H.

Hyun, S.

Y.-J. Kim, B. J. Chun, Y. Kim, S. Hyun, and S.-W. Kim, “Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication,” Laser Phys. Lett. 7(7), 522–527 (2010).
[Crossref]

Inoue, Y.

E. Yamada, H. Takara, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106 channel× 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source,” Electron. Lett. 37(25), 1534–1536 (2001).
[Crossref]

Jinguji, K.

E. Yamada, H. Takara, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106 channel× 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source,” Electron. Lett. 37(25), 1534–1536 (2001).
[Crossref]

Jørgensen, C. G.

Kang, S.-G.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photonics Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

Kim, H. D.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photonics Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

Kim, S.

Kim, S.-W.

Kim, Y.

Kim, Y.-J.

Kippenberg, T. J.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Klepser, B.

H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and tilted waveguides,” IEEE J. Quantum Electron. 40(10), 1377–1383 (2004).
[Crossref]

Knox, W. H.

M. C. Nuss, W. H. Knox, and U. Koren, “Scalable 32 channel chirped-pulse WDM source,” Electron. Lett. 32(14), 1311–1312 (1996).
[Crossref]

Koren, U.

M. C. Nuss, W. H. Knox, and U. Koren, “Scalable 32 channel chirped-pulse WDM source,” Electron. Lett. 32(14), 1311–1312 (1996).
[Crossref]

Le Guen, D.

D. Le Guen, S. Lobo, F. Merlaud, L. Billes, and T. Georges, “25 GHz spacing DWDM soliton transmission over 2000 km of SMF with 25 dB/span,” in Proceedings of 27th European Conference Optical Communications (ECOC, 2001), pp. 244–245.
[Crossref]

Lee, C.-H.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photonics Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

Liu, H.

R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag. 43(2), 80–87 (2005).
[Crossref]

Liu, X.

S. Chandrasekhar and X. Liu, “Impact of channel plan and dispersion map on hybrid DWDM transmission of 42.7-Gb/s DQPSK and 10.7-Gb/s OOK on 50-GHz grid,” IEEE Photonics Technol. Lett. 19(22), 1801–1803 (2007).
[Crossref]

Lobo, S.

D. Le Guen, S. Lobo, F. Merlaud, L. Billes, and T. Georges, “25 GHz spacing DWDM soliton transmission over 2000 km of SMF with 25 dB/span,” in Proceedings of 27th European Conference Optical Communications (ECOC, 2001), pp. 244–245.
[Crossref]

Merlaud, F.

D. Le Guen, S. Lobo, F. Merlaud, L. Billes, and T. Georges, “25 GHz spacing DWDM soliton transmission over 2000 km of SMF with 25 dB/span,” in Proceedings of 27th European Conference Optical Communications (ECOC, 2001), pp. 244–245.
[Crossref]

Morioka, T.

E. Yamada, H. Takara, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106 channel× 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source,” Electron. Lett. 37(25), 1534–1536 (2001).
[Crossref]

Newbury, N. R.

Nicholson, J. W.

Nuss, M. C.

M. C. Nuss, W. H. Knox, and U. Koren, “Scalable 32 channel chirped-pulse WDM source,” Electron. Lett. 32(14), 1311–1312 (1996).
[Crossref]

Ohara, T.

E. Yamada, H. Takara, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106 channel× 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source,” Electron. Lett. 37(25), 1534–1536 (2001).
[Crossref]

Qin, S.

Qiu, R. C.

R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag. 43(2), 80–87 (2005).
[Crossref]

Sato, K.

E. Yamada, H. Takara, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106 channel× 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source,” Electron. Lett. 37(25), 1534–1536 (2001).
[Crossref]

Schliesser, A.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Seeds, A. J.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photonics Technol. Lett. 11(5), 551–553 (1999).
[Crossref]

Shen, X.

R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag. 43(2), 80–87 (2005).
[Crossref]

Shibata, T.

E. Yamada, H. Takara, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106 channel× 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source,” Electron. Lett. 37(25), 1534–1536 (2001).
[Crossref]

Takara, H.

E. Yamada, H. Takara, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106 channel× 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source,” Electron. Lett. 37(25), 1534–1536 (2001).
[Crossref]

Telle, H. R.

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
[Crossref]

Wang, Q.

Washburn, B. R.

Yamada, E.

E. Yamada, H. Takara, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106 channel× 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source,” Electron. Lett. 37(25), 1534–1536 (2001).
[Crossref]

Yan, M. F.

Yao, J. P.

Zeng, F.

Appl. Phys. B (1)

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
[Crossref]

Electron. Lett. (2)

M. C. Nuss, W. H. Knox, and U. Koren, “Scalable 32 channel chirped-pulse WDM source,” Electron. Lett. 32(14), 1311–1312 (1996).
[Crossref]

E. Yamada, H. Takara, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106 channel× 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source,” Electron. Lett. 37(25), 1534–1536 (2001).
[Crossref]

IEEE Commun. Mag. (1)

R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag. 43(2), 80–87 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and tilted waveguides,” IEEE J. Quantum Electron. 40(10), 1377–1383 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. Chandrasekhar and X. Liu, “Impact of channel plan and dispersion map on hybrid DWDM transmission of 42.7-Gb/s DQPSK and 10.7-Gb/s OOK on 50-GHz grid,” IEEE Photonics Technol. Lett. 19(22), 1801–1803 (2007).
[Crossref]

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photonics Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photonics Technol. Lett. 11(5), 551–553 (1999).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

Y.-J. Kim, B. J. Chun, Y. Kim, S. Hyun, and S.-W. Kim, “Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication,” Laser Phys. Lett. 7(7), 522–527 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Other (4)

“Spectral grids for WDM applications: DWDM frequency grid,” International Telecommunication Union Std. ITU-T G.694.1 (2012).

A. E. Siegman, Lasers (University Science, 1986).

D. Le Guen, S. Lobo, F. Merlaud, L. Billes, and T. Georges, “25 GHz spacing DWDM soliton transmission over 2000 km of SMF with 25 dB/span,” in Proceedings of 27th European Conference Optical Communications (ECOC, 2001), pp. 244–245.
[Crossref]

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OtuM2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 System layout for multi-channel continuous-wave fiber lasers. CLK: reference atomic clock, C: coupler (50:50), AWG: array waveguide grating, PD: photo-detector, LD: laser diode, TC: tap coupler (99:1), FFP: fiber Fabry-Perot filter, ISO: isolator, EDF: Er-doped fiber, WDM: wavelength division multiplexer, OC: output coupler (90:10).
Fig. 2
Fig. 2 System layout for multi-channel continuous-wave fiber lasers. CLK: reference atomic clock, C: coupler (50:50), AWG: array waveguide grating, PD: photo-detector, LD: laser diode, TC: tap coupler (99:1), FFP: fiber Fabry-Perot filter, ISO: isolator, EDF: Er-doped fiber, WDM: wavelength division multiplexer, OC: output coupler (90:10).
Fig. 3
Fig. 3 Experimental verification. (a) Three sample wavelength channels. (b) Optical spectra of a single channel with variation of the pump power.
Fig. 4
Fig. 4 Generation Linewidth measurement. (a) RF spectrum of beat frequencies between a wavelength channel and the frequency comb. (b) Linewidth profile of the beat frequency (magnified view).
Fig. 5
Fig. 5 Wavelength stability. (a) Time trace of beat frequency fluctuation at a sampling rate of 1 s over a period of 10 hours. (b) Allan deviations of frequency stability with varying average time.

Metrics