Abstract

We have greatly increased the dynamic range of a synchronous multi-channel OTDR system for the mode coupling measurement of a multi-core fiber (MCF) by more than 20 dB by introducing an optical amplifier and an optical masking apparatus. We used the OTDR system to measure the mode coupling along 10 km-long MCFs with low crosstalks of less than −50 dB. Thus, we successfully measured the fiber structural irregularity dependence of mode coupling along the MCF.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x79x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” OFC 2011, PDPB6.
  2. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, K. Abedin, P.W. Wisk, D.W. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” OFC 2011, PDPB7.
  3. B. Zhu, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s (7x160x107 Gb/s) space-division multiplexed DWDM transmission over a 76.8-km multicore fiber,” ECOC 2011, Tu5.B5.
  4. S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km b/s/Hz,” ECOC 2011, Th13.C4.
  5. X. Liu, S. Chandrasekhar, X. Chen, P. J. Winzer, Y. Pan, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “1.12 Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexing with 60-b/s/Hz aggregate spectral efficiency,” ECOC 2011, Th13.B1.
  6. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19 x 100 x 172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s,” OFC 2012, PDP5C.1.
  7. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” ECOC2012, Th3.C.1.
  8. D. Qian, E. Ip, M.F. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y.K. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, “1.05Pb/s Transmission with 109b/s/Hz spectral efficiency using hybrid single- and few-mode cores,” FiO2012, FW6C.3.
  9. P. J. Winzer, A. H. Gnauck, A. Konczykowska, F. Jorge, and J. -Y. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” ECOC 2011, Tu5.B7.
  10. M. Nakazawa, M. Yoshida, and T. Hirooka, “Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR,” Opt. Express20(11), 12530–12540 (2012).
    [CrossRef] [PubMed]
  11. M. Yoshida, T. Hirooka, M. Nakazawa, K. Imamura, R. Sugizaki, and T. Yagi, “Measurement of structural irregularity dependence on mode coupling along multi-core fiber using multi-channel OTDR system,” 2013 IEEE Photonics Society Summer Topical Meeting, MC3.3.
  12. M. Nakazawa, M. Tokuda, and Y. Negishi, “Measurement of polarization mode coupling along a polarization-maintaining optical fiber using a backscattering technique,” Opt. Lett.8(10), 546–548 (1983).
    [CrossRef] [PubMed]
  13. M. Nakazawa, N. Shibata, M. Tokuda, and Y. Negishi, “Measurements of polarization mode couplings along polarization-maintaining single-mode optical fibers,” J. Opt. Soc. Am. A1(3), 285–292 (1984).
    [CrossRef]
  14. K. Imamura, K. Mukasa, Y. Mimura, and T. Yagi, “Multi-core holey fibers for the long-distance (>100 km)ultra large capacity transmission,” OFC 2009, OTuC3.

2012 (1)

1984 (1)

1983 (1)

Hirooka, T.

Nakazawa, M.

Negishi, Y.

Shibata, N.

Tokuda, M.

Yoshida, M.

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (1)

Other (11)

M. Yoshida, T. Hirooka, M. Nakazawa, K. Imamura, R. Sugizaki, and T. Yagi, “Measurement of structural irregularity dependence on mode coupling along multi-core fiber using multi-channel OTDR system,” 2013 IEEE Photonics Society Summer Topical Meeting, MC3.3.

K. Imamura, K. Mukasa, Y. Mimura, and T. Yagi, “Multi-core holey fibers for the long-distance (>100 km)ultra large capacity transmission,” OFC 2009, OTuC3.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x79x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” OFC 2011, PDPB6.

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, K. Abedin, P.W. Wisk, D.W. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” OFC 2011, PDPB7.

B. Zhu, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s (7x160x107 Gb/s) space-division multiplexed DWDM transmission over a 76.8-km multicore fiber,” ECOC 2011, Tu5.B5.

S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km b/s/Hz,” ECOC 2011, Th13.C4.

X. Liu, S. Chandrasekhar, X. Chen, P. J. Winzer, Y. Pan, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “1.12 Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexing with 60-b/s/Hz aggregate spectral efficiency,” ECOC 2011, Th13.B1.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19 x 100 x 172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s,” OFC 2012, PDP5C.1.

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” ECOC2012, Th3.C.1.

D. Qian, E. Ip, M.F. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y.K. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, “1.05Pb/s Transmission with 109b/s/Hz spectral efficiency using hybrid single- and few-mode cores,” FiO2012, FW6C.3.

P. J. Winzer, A. H. Gnauck, A. Konczykowska, F. Jorge, and J. -Y. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” ECOC 2011, Tu5.B7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Improved system for measuring mode coupling along MCF using multi-channel OTDR.

Fig. 2
Fig. 2

Optical amplifier setup (a) and optical masking apparatus (b).

Fig. 3
Fig. 3

Backscattered signals when a 100 ns optical pulse was coupled into center core 1 of an MCF: (a) before improvement, (b) with optical amplifier, (c) with optical amplifier and optical masking apparatus.

Fig. 4
Fig. 4

Photographs of fiber cross sections. (a) Fiber A, (b) Fiber B.

Fig. 5
Fig. 5

Changes in mode coupling ratio (a)-(d) when a 100 ns optical pulse was coupled into cores 1, 2, 4, and 6 of Fiber A, respectively.

Fig. 6
Fig. 6

(a) Change in the cladding diameter along Fiber A and (b) the spatial frequency spectrum.

Fig. 7
Fig. 7

Detailed changes in the mode coupling ratio along Fiber A and the spatial frequency spectrum. Between (a) cores 1 and 2, (b) cores 1 and 3, (c) cores 1 and 4, (d) cores 1 and 5, (e) cores 1 and 6, (f) cores 1 and 7, (g) cores 2 and 7, (h) cores 2 and 3, (i) cores 3 and 4, (j) cores 4 and 5, (k) cores 5 and 6, and (l) cores 6 and 7.

Fig. 8
Fig. 8

(a) Change in the cladding diameter along Fiber B and (b) the spatial frequency spectrum.

Fig. 9
Fig. 9

Change in mode coupling ratio along Fiber B when a 1 μs optical pulse was coupled into core 1.

Fig. 10
Fig. 10

Detailed changes in the mode coupling ratio along Fiber B and the spatial frequency spectrum. Between (a) cores 1 and 2, (b) cores 1 and 3, (c) cores 1 and 4, (d) cores 1 and 5, (e) cores 1 and 6, and (f) cores 1 and 7.

Tables (2)

Tables Icon

Table 1 Fiber parameters of two kinds of MCF

Tables Icon

Table 2 Comparison of crosstalk values measured with conventional transmission method.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η n,1 (L)= P bsn P bs1 =2 h n,1 L+K,

Metrics