Abstract

A multiheterodyne technique is presented which can accurately measure the complex spectrum and temporally reconstruct certain dynamic pulse trains. This technique is applied to periodic pulses formed in a LiNb03 Mach Zehnder modulator. The spectral amplitude and phase of 20 GHz 66% return-to-zero (RZ) pulses and 10 GHz 50% RZ pulses are measured, and compared to independent measurements from a high resolution optical spectrum analyser. The temporal pulse shape and phase is reconstructed and compared to high speed sampling oscilloscope measurements. This technique is applied to sections of a large single acquisition, allowing the reconstruction of frequency and amplitude modulated pulse trains.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon.1, 308–437, (2009).
    [CrossRef]
  2. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform generation and characterization using spectral line-by-line control,” J. Lightwave Technol.24(7), 2487–2494, (2006).
    [CrossRef]
  3. C. Dorrer and I. Kang, “Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett.27, 1315–1317, (2002)
    [CrossRef]
  4. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B.43, 103001, (2010).
    [CrossRef]
  5. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B11(11), 2206–2215, (1995).
    [CrossRef]
  6. C. Iaconis and I. Walmsley, “Spectral phase interferometry for direct electric-field recdonstruction of ultrashort optical pulses.” Opt. Lett.23(10), 792–794, (1998).
    [CrossRef]
  7. N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett. (97)(10), 101105, (2010).
    [CrossRef]
  8. Y. Li, L. F. Lester, D. Chang, C. Langrock, M. M. Fejer, and D. J. Kane, “Characteristics and instabilities of mode-locked quantum-dot diode lasers,” Opt. Express (21)(7), 8007–8017 (2013).
    [CrossRef] [PubMed]
  9. J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett.37(14), 2874–2876 (2012).
    [CrossRef] [PubMed]
  10. J. R. Freeman, J. Maysonnave, H. E. Beere, D. A. Ritchie, J. Tignon, and S. S. Dhillon, “Electric field sampling of modelocked pulses from a quantum cascade laser,” Opt. Express21(13), 16162–16169 (2013).
    [CrossRef] [PubMed]
  11. D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, 1998), Chap. 5.
  12. D. A. Reid, S. G. Murdoch, and L. P. Barry, “Stepped-heterodyne optical complex spectrum analyzer,” Opt. Express18(19), 19724–19731 (2010).
    [CrossRef] [PubMed]
  13. J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave. Technol.29(20), 3091–3098 (2011).
    [CrossRef]
  14. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett.27(9), 766–768 (2002).
    [CrossRef]
  15. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Phot.1(8), 463–467, (2007).
    [CrossRef]
  16. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Phot.3(6), 351–356,(2009)
    [CrossRef]
  17. T. Healy, F. C. G. Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express15, 2981–2986 (2007).
    [CrossRef] [PubMed]
  18. N.K. Fontaine, D. J. Geisler, R. P. Scott, and S. J. B. Yoo, “Simultaneous and self-referenced amplitude and phase measurement of two frequency combs using multi-heterodyne spectroscopy,” Optical Fiber Communication Conference, OSA Technical Digest, OW1C.1. (2012).
  19. A. Klee, J. Davila-Rodriguez, C. Williams, and P.J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalised multiheterodyne detection,” IEEE J. Sel. Top. Quant.19(4), 1100711 (2013).
    [CrossRef]
  20. P. J. Winzer, C. Dorrer, R. -J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Phot. Tech. Lett.16(5), 1279–1381 (2004).
    [CrossRef]

2013

2012

2011

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave. Technol.29(20), 3091–3098 (2011).
[CrossRef]

2010

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B.43, 103001, (2010).
[CrossRef]

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett. (97)(10), 101105, (2010).
[CrossRef]

D. A. Reid, S. G. Murdoch, and L. P. Barry, “Stepped-heterodyne optical complex spectrum analyzer,” Opt. Express18(19), 19724–19731 (2010).
[CrossRef] [PubMed]

2009

I. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon.1, 308–437, (2009).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Phot.3(6), 351–356,(2009)
[CrossRef]

2007

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Phot.1(8), 463–467, (2007).
[CrossRef]

T. Healy, F. C. G. Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express15, 2981–2986 (2007).
[CrossRef] [PubMed]

2006

2004

P. J. Winzer, C. Dorrer, R. -J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Phot. Tech. Lett.16(5), 1279–1381 (2004).
[CrossRef]

2002

1998

1995

Bagnell, M.

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave. Technol.29(20), 3091–3098 (2011).
[CrossRef]

Barry, L. P.

Bartels, R.

Beere, H. E.

Bull, J. D.

Chang, D.

Chatel, B.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B.43, 103001, (2010).
[CrossRef]

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Phot.3(6), 351–356,(2009)
[CrossRef]

Davila-Rodriguez, J.

A. Klee, J. Davila-Rodriguez, C. Williams, and P.J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalised multiheterodyne detection,” IEEE J. Sel. Top. Quant.19(4), 1100711 (2013).
[CrossRef]

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave. Technol.29(20), 3091–3098 (2011).
[CrossRef]

Delfyett, P. J.

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave. Technol.29(20), 3091–3098 (2011).
[CrossRef]

Delfyett, P.J.

A. Klee, J. Davila-Rodriguez, C. Williams, and P.J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalised multiheterodyne detection,” IEEE J. Sel. Top. Quant.19(4), 1100711 (2013).
[CrossRef]

DeLong, K. W.

Derickson, D.

D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, 1998), Chap. 5.

Dhillon, S. S.

Dorrer, C.

Ellis, A. D.

Essiambre, R. -J.

P. J. Winzer, C. Dorrer, R. -J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Phot. Tech. Lett.16(5), 1279–1381 (2004).
[CrossRef]

Fejer, M. M.

Fontaine, N.K.

N.K. Fontaine, D. J. Geisler, R. P. Scott, and S. J. B. Yoo, “Simultaneous and self-referenced amplitude and phase measurement of two frequency combs using multi-heterodyne spectroscopy,” Optical Fiber Communication Conference, OSA Technical Digest, OW1C.1. (2012).

Freeman, J. R.

Geisler, D. J.

N.K. Fontaine, D. J. Geisler, R. P. Scott, and S. J. B. Yoo, “Simultaneous and self-referenced amplitude and phase measurement of two frequency combs using multi-heterodyne spectroscopy,” Optical Fiber Communication Conference, OSA Technical Digest, OW1C.1. (2012).

Gunning, F. C. G.

Habruseva, T.

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett. (97)(10), 101105, (2010).
[CrossRef]

Healy, T.

Hegarty, S. P.

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett. (97)(10), 101105, (2010).
[CrossRef]

Huang, C. B.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Phot.1(8), 463–467, (2007).
[CrossRef]

Hunter, J.

Huyet, G.

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett. (97)(10), 101105, (2010).
[CrossRef]

Iaconis, C.

Jiang, Z.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Phot.1(8), 463–467, (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform generation and characterization using spectral line-by-line control,” J. Lightwave Technol.24(7), 2487–2494, (2006).
[CrossRef]

Kane, D. J.

Kang, I.

P. J. Winzer, C. Dorrer, R. -J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Phot. Tech. Lett.16(5), 1279–1381 (2004).
[CrossRef]

C. Dorrer and I. Kang, “Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett.27, 1315–1317, (2002)
[CrossRef]

Klee, A.

A. Klee, J. Davila-Rodriguez, C. Williams, and P.J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalised multiheterodyne detection,” IEEE J. Sel. Top. Quant.19(4), 1100711 (2013).
[CrossRef]

Langrock, C.

Leaird, D. E.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Phot.1(8), 463–467, (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform generation and characterization using spectral line-by-line control,” J. Lightwave Technol.24(7), 2487–2494, (2006).
[CrossRef]

Lester, L. F.

Li, Y.

Maysonnave, J.

Monmayrant, A.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B.43, 103001, (2010).
[CrossRef]

Murdoch, S. G.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Phot.3(6), 351–356,(2009)
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Phot.3(6), 351–356,(2009)
[CrossRef]

Ratner, J.

Rebrova, N.

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett. (97)(10), 101105, (2010).
[CrossRef]

Reid, D. A.

Ritchie, D. A.

Schiller, S.

Scott, R. P.

N.K. Fontaine, D. J. Geisler, R. P. Scott, and S. J. B. Yoo, “Simultaneous and self-referenced amplitude and phase measurement of two frequency combs using multi-heterodyne spectroscopy,” Optical Fiber Communication Conference, OSA Technical Digest, OW1C.1. (2012).

Steinmeyer, G.

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Phot.3(6), 351–356,(2009)
[CrossRef]

Tignon, J.

Trebino, R.

Walmsley, I.

Weber, S.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B.43, 103001, (2010).
[CrossRef]

Weiner, A. M.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Phot.1(8), 463–467, (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform generation and characterization using spectral line-by-line control,” J. Lightwave Technol.24(7), 2487–2494, (2006).
[CrossRef]

White, W. E.

Williams, C.

A. Klee, J. Davila-Rodriguez, C. Williams, and P.J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalised multiheterodyne detection,” IEEE J. Sel. Top. Quant.19(4), 1100711 (2013).
[CrossRef]

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave. Technol.29(20), 3091–3098 (2011).
[CrossRef]

Winzer, P. J.

P. J. Winzer, C. Dorrer, R. -J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Phot. Tech. Lett.16(5), 1279–1381 (2004).
[CrossRef]

Wong, T. C.

Yoo, S. J. B.

N.K. Fontaine, D. J. Geisler, R. P. Scott, and S. J. B. Yoo, “Simultaneous and self-referenced amplitude and phase measurement of two frequency combs using multi-heterodyne spectroscopy,” Optical Fiber Communication Conference, OSA Technical Digest, OW1C.1. (2012).

Adv. Opt. Photon.

Appl. Phys. Lett.

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett. (97)(10), 101105, (2010).
[CrossRef]

IEEE J. Sel. Top. Quant.

A. Klee, J. Davila-Rodriguez, C. Williams, and P.J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalised multiheterodyne detection,” IEEE J. Sel. Top. Quant.19(4), 1100711 (2013).
[CrossRef]

IEEE Phot. Tech. Lett.

P. J. Winzer, C. Dorrer, R. -J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Phot. Tech. Lett.16(5), 1279–1381 (2004).
[CrossRef]

J. Lightwave Technol.

J. Lightwave. Technol.

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave. Technol.29(20), 3091–3098 (2011).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B.43, 103001, (2010).
[CrossRef]

Nat. Phot.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Phot.1(8), 463–467, (2007).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Phot.3(6), 351–356,(2009)
[CrossRef]

Opt. Express

Opt. Lett.

Other

N.K. Fontaine, D. J. Geisler, R. P. Scott, and S. J. B. Yoo, “Simultaneous and self-referenced amplitude and phase measurement of two frequency combs using multi-heterodyne spectroscopy,” Optical Fiber Communication Conference, OSA Technical Digest, OW1C.1. (2012).

D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, 1998), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the (a) optical and (b) radio frequency spectrum of two de-tuned combs at frequencies F and f.

Fig. 2
Fig. 2

Experimental set-up for the single-shot multiheterodyne detection scheme.

Fig. 3
Fig. 3

Fourier transform of the detected multiheterodyne time trace from the 40 GSa/s real time oscilloscope. Additional tones present in the RF spectrum correspond to electrical noise signals and have no effect on the result of the algorithm.

Fig. 4
Fig. 4

(a) Measured spectral and (b) reconstructed temporal intensity and phase of 10 Ghz 50% RZ pulses formed with a quadrature biased MZM driven at 10 GHz. Shown for comparison, in black, is in (a) the spectrum captured on a high resolution OSA and in (b) the temporal intensity measured with a fast photodiode and sampling oscilloscope.

Fig. 5
Fig. 5

(a) Measured spectral and (b) reconstructed temporal intensity and phase, in red, of 20 Ghz 66% RZ pulses formed with a slightly off-null biased MZM driven at 10 GHz. Shown for comparison, in black, is in (a) the spectrum captured on a high resolution OSA and in (b) the temporal intensity measured with a fast photodiode and sampling oscilloscope.

Fig. 6
Fig. 6

Variation in the peak intensity of the pulse train over time, for a 50% amplitude modulated MZM drive signal with a 100 kHz modulation (red). The data is compared to a numerical model, computed using a simple transfer function approach with an AM drive, plotted in black. The subfigures labelled 1, 2 and 3 show the reconstructed 50% RZ pulse train at the corresponding points along the AM period.

Fig. 7
Fig. 7

Variation in period of the pulse train over time, for a frequency modulated MZM drive signal at 10 kHz, with a 10 MHz frequency deviation, biased at quadrature. The reconstructed pulse periods are shown for both sinusoidal (blue) and square (red) modulation schemes. Note that the deviation from a perfect square modulation signal (tail and overshoot) is due to imperfections in the modulated drive signal and not from the reconstruction of the pulse train.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E cut ( t ) = n = 0 P n exp ( i n 2 π F t + i ϕ n ) exp ( i ω cut t + i ϕ cut ( t ) )
E ref ( t ) = k = 0 l P k exp ( i k 2 π f t + i ϕ k ) exp ( i ( ω cut + δ ω ) t + i ϕ ref ( t ) )
sig δ k = P k P n exp ( i ( 2 π δ k t + ϕ k + Δ ϕ ( t ) ϕ n ) ) ,
sig F δ k = P k P n + 1 exp ( i ( 2 π ( F δ k ) t ϕ k Δ ϕ ( t ) + ϕ n + 1 ) ) ,
sig F = P tot exp ( i ( 2 π F t + ϕ tot ) ) ,
sig δ k sig F δ k = P k P n P n + 1 exp ( i ( 2 π F t + ( ϕ n + 1 ϕ n ) ) ) .
sig δ k sig F δ k sig F ¯ exp ( i ( ϕ n + 1 ϕ n ϕ tot ) ) .

Metrics