Abstract

The high order cladding modes of standard single mode optical fiber appear in quasi-degenerate pairs corresponding to mostly radially or mostly azimuthally polarized light. In this work, we demonstrate that, in the presence of a high-refractive-index coating surrounding the fiber outer surface, the wavelength spacing between the orthogonally polarized cladding modes families can be drastically enhanced. This behavior can be advantageously exploited for refractometric sensing purposes. For this, we make use of tilted fiber Bragg gratings (TFBGs) as spectral combs to excite the orthogonally polarized cladding modes families separately. TFBGs were coated with a nanometer-scale transparent thin film characterized by a refractive index value close to 1.9, well higher than the one of pure silica. This coating brings two important assets: an ~8-fold increase in refractometric sensitivity is obtained in comparison to bare TFBGs while the sensitivity is extended to surrounding refractive index (SRI) values above 1.45.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
    [CrossRef]
  2. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett.16(4), 1149–1151 (2004).
    [CrossRef]
  3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett.21(9), 692–694 (1996).
    [CrossRef] [PubMed]
  4. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
    [CrossRef]
  5. J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg gratings sensors,” Laser Photonics Rev.7(1), 83–108 (2013).
    [CrossRef]
  6. C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett.17(12), 2703–2705 (2005).
    [CrossRef]
  7. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.46(7), 1142–1149 (2007).
    [CrossRef] [PubMed]
  8. F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
    [CrossRef] [PubMed]
  9. V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron.51, 249–254 (2014).
    [CrossRef] [PubMed]
  10. Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol.15(3), 233–236 (2009).
    [CrossRef]
  11. C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett.20(24), 2153–2155 (2008).
    [CrossRef]
  12. G. Laffont and P. Ferdinand, “Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica,” Electron. Lett.37(5), 289–290 (2001).
    [CrossRef]
  13. D. Hu and Q. Jiang, “Thermal independent solution concentration sensing with tilted fiber Bragg grating,” Proc. SPIE345, 3–8 (2010).
  14. C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J.8(7), 1330–1336 (2008).
    [CrossRef]
  15. C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol.18(10), 3117–3122 (2007).
    [CrossRef]
  16. D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett.19(24), 2051–2053 (2007).
    [CrossRef]
  17. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett.27(9), 686–688 (2002).
    [CrossRef] [PubMed]
  18. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity,” Opt. Lett.30(19), 2536–2538 (2005).
    [CrossRef] [PubMed]
  19. I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B107(2), 738–741 (2005).
    [CrossRef]
  20. A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Mode transition in complex refractive index coated single-mode-multimode-single-mode structure,” Opt. Express21(10), 12668–12682 (2013).
    [CrossRef] [PubMed]
  21. Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett.35(5), 637–639 (2010).
    [CrossRef] [PubMed]
  22. C. Caucheteur, Y. Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express19(2), 1656–1664 (2011).
    [CrossRef] [PubMed]
  23. C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express21(3), 3055–3066 (2013).
    [CrossRef] [PubMed]
  24. Y. C. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, “Polarization effects in tilted fiber Bragg grating refractometers,” J. Lightwave Technol.28(11), 1677–1684 (2010).
    [CrossRef]
  25. M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express15(24), 15928–15934 (2007).
    [CrossRef] [PubMed]
  26. S. Lopez, I. del Villar, C. Ruiz Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering,” Opt. Lett.37(1), 28–30 (2012).
    [CrossRef] [PubMed]

2014 (1)

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron.51, 249–254 (2014).
[CrossRef] [PubMed]

2013 (3)

2012 (2)

S. Lopez, I. del Villar, C. Ruiz Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering,” Opt. Lett.37(1), 28–30 (2012).
[CrossRef] [PubMed]

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (3)

2009 (1)

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol.15(3), 233–236 (2009).
[CrossRef]

2008 (2)

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett.20(24), 2153–2155 (2008).
[CrossRef]

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J.8(7), 1330–1336 (2008).
[CrossRef]

2007 (4)

C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol.18(10), 3117–3122 (2007).
[CrossRef]

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett.19(24), 2051–2053 (2007).
[CrossRef]

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express15(24), 15928–15934 (2007).
[CrossRef] [PubMed]

2005 (3)

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett.17(12), 2703–2705 (2005).
[CrossRef]

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B107(2), 738–741 (2005).
[CrossRef]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity,” Opt. Lett.30(19), 2536–2538 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett.16(4), 1149–1151 (2004).
[CrossRef]

2002 (1)

2001 (3)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
[CrossRef]

G. Laffont and P. Ferdinand, “Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica,” Electron. Lett.37(5), 289–290 (2001).
[CrossRef]

1996 (1)

’t Hooft, G. W.

Aiello, A.

Albert, J.

Andreev, A.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

Arregui, F. J.

Ashwell, G. J.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B107(2), 738–741 (2005).
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett.27(9), 686–688 (2002).
[CrossRef] [PubMed]

Baldini, F.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett.16(4), 1149–1151 (2004).
[CrossRef]

Bette, S.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett.20(24), 2153–2155 (2008).
[CrossRef]

Bhatia, V.

Brenci, M.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

Campopiano, S.

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J.8(7), 1330–1336 (2008).
[CrossRef]

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett.19(24), 2051–2053 (2007).
[CrossRef]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity,” Opt. Lett.30(19), 2536–2538 (2005).
[CrossRef] [PubMed]

Caucheteur, C.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron.51, 249–254 (2014).
[CrossRef] [PubMed]

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express21(3), 3055–3066 (2013).
[CrossRef] [PubMed]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg gratings sensors,” Laser Photonics Rev.7(1), 83–108 (2013).
[CrossRef]

C. Caucheteur, Y. Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express19(2), 1656–1664 (2011).
[CrossRef] [PubMed]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett.20(24), 2153–2155 (2008).
[CrossRef]

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J.8(7), 1330–1336 (2008).
[CrossRef]

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett.19(24), 2051–2053 (2007).
[CrossRef]

C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol.18(10), 3117–3122 (2007).
[CrossRef]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett.17(12), 2703–2705 (2005).
[CrossRef]

Chan, C. F.

Chen, C.

Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett.35(5), 637–639 (2010).
[CrossRef] [PubMed]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett.20(24), 2153–2155 (2008).
[CrossRef]

C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol.18(10), 3117–3122 (2007).
[CrossRef]

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Chiavaioli, F.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

Contessa, L.

Corres, J. M.

Cusano, A.

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J.8(7), 1330–1336 (2008).
[CrossRef]

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett.19(24), 2051–2053 (2007).
[CrossRef]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity,” Opt. Lett.30(19), 2536–2538 (2005).
[CrossRef] [PubMed]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett.16(4), 1149–1151 (2004).
[CrossRef]

Cutolo, A.

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J.8(7), 1330–1336 (2008).
[CrossRef]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity,” Opt. Lett.30(19), 2536–2538 (2005).
[CrossRef] [PubMed]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett.16(4), 1149–1151 (2004).
[CrossRef]

Dakka, M. A.

Damman, P.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron.51, 249–254 (2014).
[CrossRef] [PubMed]

Del Villar, I.

Ecke, W.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

Eliel, E. R.

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
[CrossRef]

G. Laffont and P. Ferdinand, “Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica,” Electron. Lett.37(5), 289–290 (2001).
[CrossRef]

Geng, R.

Giannetti, A.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

Giordano, M.

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J.8(7), 1330–1336 (2008).
[CrossRef]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity,” Opt. Lett.30(19), 2536–2538 (2005).
[CrossRef] [PubMed]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett.16(4), 1149–1151 (2004).
[CrossRef]

Hernaez, M.

Hu, D.

D. Hu and Q. Jiang, “Thermal independent solution concentration sensing with tilted fiber Bragg grating,” Proc. SPIE345, 3–8 (2010).

Iadicicco, A.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity,” Opt. Lett.30(19), 2536–2538 (2005).
[CrossRef] [PubMed]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett.16(4), 1149–1151 (2004).
[CrossRef]

Ishaq, I. M.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B107(2), 738–741 (2005).
[CrossRef]

Jafari, A.

James, S. W.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B107(2), 738–741 (2005).
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett.27(9), 686–688 (2002).
[CrossRef] [PubMed]

Jian, S.

Jiang, Q.

D. Hu and Q. Jiang, “Thermal independent solution concentration sensing with tilted fiber Bragg grating,” Proc. SPIE345, 3–8 (2010).

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
[CrossRef]

G. Laffont and P. Ferdinand, “Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica,” Electron. Lett.37(5), 289–290 (2001).
[CrossRef]

Laronche, A.

Liu, B.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol.15(3), 233–236 (2009).
[CrossRef]

Liu, C.

Lopez, S.

Lopez-Higuera, J. M.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B107(2), 738–741 (2005).
[CrossRef]

Lu, Y. C.

Matias, I. R.

Mégret, P.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron.51, 249–254 (2014).
[CrossRef] [PubMed]

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J.8(7), 1330–1336 (2008).
[CrossRef]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett.20(24), 2153–2155 (2008).
[CrossRef]

C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol.18(10), 3117–3122 (2007).
[CrossRef]

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett.19(24), 2051–2053 (2007).
[CrossRef]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett.17(12), 2703–2705 (2005).
[CrossRef]

Merano, M.

Miao, Y. P.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol.15(3), 233–236 (2009).
[CrossRef]

Mueller, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

Ning, T.

Paladino, D.

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J.8(7), 1330–1336 (2008).
[CrossRef]

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett.19(24), 2051–2053 (2007).
[CrossRef]

Pilate, J.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron.51, 249–254 (2014).
[CrossRef] [PubMed]

Pilla, P.

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J.8(7), 1330–1336 (2008).
[CrossRef]

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett.19(24), 2051–2053 (2007).
[CrossRef]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity,” Opt. Lett.30(19), 2536–2538 (2005).
[CrossRef] [PubMed]

Quintela, A.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B107(2), 738–741 (2005).
[CrossRef]

Rees, N. D.

Ruiz Zamarreño, C.

Schroeder, K.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

Shao, L.-Y.

Shevchenko, Y. Y.

Socorro, A. B.

Tatam, R. P.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B107(2), 738–741 (2005).
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett.27(9), 686–688 (2002).
[CrossRef] [PubMed]

Thomson, D. J.

Trono, C.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

van Exter, M. P.

Vengsarkar, A. M.

Voisin, V.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron.51, 249–254 (2014).
[CrossRef] [PubMed]

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express21(3), 3055–3066 (2013).
[CrossRef] [PubMed]

Wang, C.

Willsch, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

Woerdman, J. P.

Wuilpart, M.

C. Caucheteur, Y. Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express19(2), 1656–1664 (2011).
[CrossRef] [PubMed]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett.20(24), 2153–2155 (2008).
[CrossRef]

Zhang, F.

Zhao, Q. D.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol.15(3), 233–236 (2009).
[CrossRef]

Anal. Bioanal. Chem. (1)

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem.402(1), 109–116 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron.51, 249–254 (2014).
[CrossRef] [PubMed]

Electron. Lett. (1)

G. Laffont and P. Ferdinand, “Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica,” Electron. Lett.37(5), 289–290 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett.20(24), 2153–2155 (2008).
[CrossRef]

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett.19(24), 2051–2053 (2007).
[CrossRef]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett.17(12), 2703–2705 (2005).
[CrossRef]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett.16(4), 1149–1151 (2004).
[CrossRef]

IEEE Sens. J. (1)

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J.8(7), 1330–1336 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg gratings sensors,” Laser Photonics Rev.7(1), 83–108 (2013).
[CrossRef]

Meas. Sci. Technol. (3)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001).
[CrossRef]

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
[CrossRef]

C. Chen, C. Caucheteur, P. Mégret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol.18(10), 3117–3122 (2007).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol.15(3), 233–236 (2009).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (1)

D. Hu and Q. Jiang, “Thermal independent solution concentration sensing with tilted fiber Bragg grating,” Proc. SPIE345, 3–8 (2010).

Sens. Actuators B (1)

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B107(2), 738–741 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

P- and S-polarized amplitude transmitted spectra of a 1 cm long 6° TFBG.

Fig. 2
Fig. 2

Simulated wavelength spacing between P- and S-polarized modes in air for a 200 nm coating with a refractive index value varying between 1.0 and 2.0 (a) and for a n = 1.9 coating with a thickness varying between 0 and 200 nm (b).

Fig. 3
Fig. 3

Simulated wavelength spacing between P- and S-polarized modes in water for a n = 1.9 coating with a thickness varying between 0 and 200 nm.

Fig. 4
Fig. 4

SEM images of ZnO coated TFBGs. Top: 100 nm coating, 750x magnification (a) and 5000x magnification (b).

Fig. 5
Fig. 5

SEM images of the fiber transverse section coated by a 400 nm ZnO coating: whole section (a), zoom on the minimum ZnO coating thickness (b) and zoom on the maximum ZnO coating thickness (c).

Fig. 6
Fig. 6

Sketch up of the polarization dependency TFBG measurement set-up

Fig. 7
Fig. 7

Transmitted spectra for the s and p polarized state of a 200 nm ZnO coated TFBGs in air. Zoom around 1535 nm (a) and 1575 nm (b).

Fig. 8
Fig. 8

Experimental wavelength spacing between P- and S-polarized modes for ZnO coated TFBGs with a thickness varying between 0 and 200 nm.

Fig. 9
Fig. 9

Evolution of the cladding mode resonance wavelength shift around 1545 nm (top), 1555 nm (middle) and 1565 (bottom) nm for a bare and a 200 nm coated TFBGs.

Fig. 10
Fig. 10

Wavelength shift of the cladding mode resonance located right after the cut-off wavelength as a function of slight SRI changes.

Metrics