Abstract

We describe a 1.28 Tbit/s single-channel transmission in the 1.1 μm band that uses a high-Δ single-mode step-index fiber (SIF) and ytterbium-doped fiber amplifiers (YDFAs). A 650 fs signal pulse was generated from a 10 GHz mode-locked Yb fiber laser (Yb MLFL) that was soliton-compressed by using an anomalous dispersion photonic crystal fiber (PCF). The dispersion of the SIF was compensated over a bandwidth as broad as 2.1 THz with two cascaded chirped fiber Bragg gratings (FBGs). In addition, an enhanced pre-chirping technique was newly adopted for the precise elimination of the large waveform distortion caused by the dispersion slope. As a result, 320 Gbit/s-161 km and 1.28 Tbit/s-58 km transmissions were successfully achieved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, “Giant leaps in optical communication technologies towards 2030 and beyond,” Plenary Talk presented at 2010 36th European Conference on Optical Communication (ECOC), Torino Italy, 19-23 Sept. 2010.
  2. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, "First demonstration of 2µm data transmission in a low-loss hollow core photonic bandgap fiber," in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.3.A.5.
  3. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
    [CrossRef]
  4. K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE6769, 67690J (2007).
  5. K. Kurokawa, K. Nakajima, K. Tsujikawa, K. Tajima, T. Matsui, and I. Sankawa, “Penalty-free 40 Gb/s transmission in 1000 nm band over low loss PCF,” in in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThH2.
  6. K. Kurokawa, T. Yamamoto, K. Tajima, A. Aratake, K. Suzuki, and T. Kurashima, “WDM transmission in 1.0 μm band over PCF using supercontinuum source,” IEICE Electron. Express5(11), 395–399 (2008).
    [CrossRef]
  7. N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express16(24), 19836–19843 (2008).
    [CrossRef] [PubMed]
  8. N. Yamamoto and H. Sotobayashi, “Quantum dot photonic devices for 1-μm waveband photonic transport system,” Int. J. Microwave Opt. Technol.5, 455–459 (2010).
  9. K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, “10 Gbit/s photonic crystal fiber transmissions with 1.1 μm directly-modulated single-mode VCSEL,” IEICE Electron. Express6(22), 1615–1620 (2009).
    [CrossRef]
  10. K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, “160 Gbit/s-300 km single-channel transmission in the 1.1 μm band with a precise GVD and slope compensation,” Opt. Express21(4), 4303–4310 (2013).
    [CrossRef] [PubMed]
  11. K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, “A 10 GHz 1.1 ps regeneratively mode-locked Yb fiber laser in the 1.1 μm band,” Opt. Express19, 25426–25432 (2011).
    [CrossRef] [PubMed]
  12. T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett.34(10), 1013–1014 (1998).
    [CrossRef]
  13. M. D. Pelusi, Y. Matsui, and A. Suzuki, “Phase modulation of stretched optical pulses for suppression of third-order dispersion effects in fiber transmission,” Electron. Lett.34(17), 1675–1677 (1998).
    [CrossRef]
  14. T. Yamamoto and M. Nakazawa, “Third- and fourth-order active dispersion compensation with a phase modulator in a terabit-per-second optical time-division multiplexed transmission,” Opt. Lett.26(9), 647–649 (2001).
    [CrossRef] [PubMed]
  15. K. Kurokawa, K. Tajima, and K. Nakajima, “10 GHz 0.5 ps pulse generation in 1000 nm band in PCF for high speed optical communication,” J. Lightwave Technol.25(1), 75–78 (2007).
    [CrossRef]

2013

2011

2010

N. Yamamoto and H. Sotobayashi, “Quantum dot photonic devices for 1-μm waveband photonic transport system,” Int. J. Microwave Opt. Technol.5, 455–459 (2010).

2009

K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, “10 Gbit/s photonic crystal fiber transmissions with 1.1 μm directly-modulated single-mode VCSEL,” IEICE Electron. Express6(22), 1615–1620 (2009).
[CrossRef]

2008

N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express16(24), 19836–19843 (2008).
[CrossRef] [PubMed]

K. Kurokawa, T. Yamamoto, K. Tajima, A. Aratake, K. Suzuki, and T. Kurashima, “WDM transmission in 1.0 μm band over PCF using supercontinuum source,” IEICE Electron. Express5(11), 395–399 (2008).
[CrossRef]

2007

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE6769, 67690J (2007).

K. Kurokawa, K. Tajima, and K. Nakajima, “10 GHz 0.5 ps pulse generation in 1000 nm band in PCF for high speed optical communication,” J. Lightwave Technol.25(1), 75–78 (2007).
[CrossRef]

2001

1998

T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett.34(10), 1013–1014 (1998).
[CrossRef]

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Phase modulation of stretched optical pulses for suppression of third-order dispersion effects in fiber transmission,” Electron. Lett.34(17), 1675–1677 (1998).
[CrossRef]

1997

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Aiso, K.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE6769, 67690J (2007).

Akahane, K.

Aratake, A.

K. Kurokawa, T. Yamamoto, K. Tajima, A. Aratake, K. Suzuki, and T. Kurashima, “WDM transmission in 1.0 μm band over PCF using supercontinuum source,” IEICE Electron. Express5(11), 395–399 (2008).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Hirooka, T.

Imamura, K.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE6769, 67690J (2007).

Koizumi, K.

Kurashima, T.

K. Kurokawa, T. Yamamoto, K. Tajima, A. Aratake, K. Suzuki, and T. Kurashima, “WDM transmission in 1.0 μm band over PCF using supercontinuum source,” IEICE Electron. Express5(11), 395–399 (2008).
[CrossRef]

Kurokawa, K.

K. Kurokawa, T. Yamamoto, K. Tajima, A. Aratake, K. Suzuki, and T. Kurashima, “WDM transmission in 1.0 μm band over PCF using supercontinuum source,” IEICE Electron. Express5(11), 395–399 (2008).
[CrossRef]

K. Kurokawa, K. Tajima, and K. Nakajima, “10 GHz 0.5 ps pulse generation in 1000 nm band in PCF for high speed optical communication,” J. Lightwave Technol.25(1), 75–78 (2007).
[CrossRef]

Matsui, Y.

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Phase modulation of stretched optical pulses for suppression of third-order dispersion effects in fiber transmission,” Electron. Lett.34(17), 1675–1677 (1998).
[CrossRef]

Miyabe, R.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE6769, 67690J (2007).

Mukasa, K.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE6769, 67690J (2007).

Nakajima, K.

Nakazawa, M.

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Pelusi, M. D.

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Phase modulation of stretched optical pulses for suppression of third-order dispersion effects in fiber transmission,” Electron. Lett.34(17), 1675–1677 (1998).
[CrossRef]

Sotobayashi, H.

Sugizaki, R.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE6769, 67690J (2007).

Suzuki, A.

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Phase modulation of stretched optical pulses for suppression of third-order dispersion effects in fiber transmission,” Electron. Lett.34(17), 1675–1677 (1998).
[CrossRef]

Suzuki, K.

K. Kurokawa, T. Yamamoto, K. Tajima, A. Aratake, K. Suzuki, and T. Kurashima, “WDM transmission in 1.0 μm band over PCF using supercontinuum source,” IEICE Electron. Express5(11), 395–399 (2008).
[CrossRef]

Tajima, K.

K. Kurokawa, T. Yamamoto, K. Tajima, A. Aratake, K. Suzuki, and T. Kurashima, “WDM transmission in 1.0 μm band over PCF using supercontinuum source,” IEICE Electron. Express5(11), 395–399 (2008).
[CrossRef]

K. Kurokawa, K. Tajima, and K. Nakajima, “10 GHz 0.5 ps pulse generation in 1000 nm band in PCF for high speed optical communication,” J. Lightwave Technol.25(1), 75–78 (2007).
[CrossRef]

Takashima, K.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Tsuchiya, M.

Yagi, T.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE6769, 67690J (2007).

Yamamoto, N.

Yamamoto, T.

K. Kurokawa, T. Yamamoto, K. Tajima, A. Aratake, K. Suzuki, and T. Kurashima, “WDM transmission in 1.0 μm band over PCF using supercontinuum source,” IEICE Electron. Express5(11), 395–399 (2008).
[CrossRef]

T. Yamamoto and M. Nakazawa, “Third- and fourth-order active dispersion compensation with a phase modulator in a terabit-per-second optical time-division multiplexed transmission,” Opt. Lett.26(9), 647–649 (2001).
[CrossRef] [PubMed]

T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett.34(10), 1013–1014 (1998).
[CrossRef]

Yokoyama, H.

Yoshida, E.

T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett.34(10), 1013–1014 (1998).
[CrossRef]

Yoshida, M.

Electron. Lett.

T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett.34(10), 1013–1014 (1998).
[CrossRef]

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Phase modulation of stretched optical pulses for suppression of third-order dispersion effects in fiber transmission,” Electron. Lett.34(17), 1675–1677 (1998).
[CrossRef]

IEEE J. Quantum Electron.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

IEICE Electron. Express

K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, “10 Gbit/s photonic crystal fiber transmissions with 1.1 μm directly-modulated single-mode VCSEL,” IEICE Electron. Express6(22), 1615–1620 (2009).
[CrossRef]

K. Kurokawa, T. Yamamoto, K. Tajima, A. Aratake, K. Suzuki, and T. Kurashima, “WDM transmission in 1.0 μm band over PCF using supercontinuum source,” IEICE Electron. Express5(11), 395–399 (2008).
[CrossRef]

Int. J. Microwave Opt. Technol.

N. Yamamoto and H. Sotobayashi, “Quantum dot photonic devices for 1-μm waveband photonic transport system,” Int. J. Microwave Opt. Technol.5, 455–459 (2010).

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. SPIE

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE6769, 67690J (2007).

Other

K. Kurokawa, K. Nakajima, K. Tsujikawa, K. Tajima, T. Matsui, and I. Sankawa, “Penalty-free 40 Gb/s transmission in 1000 nm band over low loss PCF,” in in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThH2.

M. Nakazawa, “Giant leaps in optical communication technologies towards 2030 and beyond,” Plenary Talk presented at 2010 36th European Conference on Optical Communication (ECOC), Torino Italy, 19-23 Sept. 2010.

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, "First demonstration of 2µm data transmission in a low-loss hollow core photonic bandgap fiber," in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.3.A.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Configuration of the soliton compression, (b) output pulse width versus launched power (PCF length = 80 m), (c) autocorrelation waveform of a 650 fs compressed pulse (Ppeak = 2.0 W), and (d) autocorrelation waveform of a 400 fs compressed pulse (Ppeak = 2.8 W).

Fig. 2
Fig. 2

(a) Configuration of the GVD compensator and (b) reflectivity characteristics of the FBGs.

Fig. 3
Fig. 3

Setup of dispersion slope compensator with an LN phase modulator in a round-trip configuration.

Fig. 4
Fig. 4

Experimental setup for evaluating pre-chirp performance.

Fig. 5
Fig. 5

Cross correlation waveform of a 1.1 ps pulse after 58 km propagation at 1.1 μm. (a) Before transmission, (b) without dispersion slope compensation, (c) with dispersion slope compensation.

Fig. 6
Fig. 6

Cross correlation waveform of a 650 fs pulse after 58 km propagation at 1.1 μm. (a) Before transmission, (b) without dispersion slope compensation, (c) with dispersion slope compensation.

Fig. 7
Fig. 7

Configuration of a wideband dispersion slope compensator.

Fig. 8
Fig. 8

Numerical result for pulse width after dispersion slope compensation.

Fig. 9
Fig. 9

Cross correlation waveform of a 650 fs pulse after 58 km propagation over a 1.1 μm SIF with dispersion slope compensation. (a) Only 10 GHz and (b) 10 + 20 GHz modulation.

Fig. 10
Fig. 10

Experimental setup for 1.1 μm, 320 Gbit/s~1.28 Tbit/s OTDM OOK transmission.

Fig. 11
Fig. 11

(a) 320 Gbit/s cross correlation waveform and (b) demultiplexed 10 Gbit/s signal after the NOLM under a back-to-back condition.

Fig. 12
Fig. 12

(a) 640 Gbit/s cross correlation waveform and (b) demultiplexed 10 Gbit/s signal after the NOLM under a back-to-back condition.

Fig. 13
Fig. 13

(a) Optical spectra and (b) BER characteristics for 320 Gbit/s signal after 104 and 161 km transmissions.

Fig. 14
Fig. 14

(a) Optical spectra and (b) BER characteristic for 1.28 Tbit/s-58 km transmission.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P soliton =3.11 λ 2 | D | 2πcγ τ FWHM 2 , Z sp =0.322 π 2 c τ FWHM 2 λ 2 | D |
ϕ sin ( ω )= ϕ s1 sin{ A( ω ω 0 ) } ϕ s2 sin{ 2A( ω ω 0 ) } =( ϕ s1 2 ϕ s2 )A( ω ω 0 ) ϕ s1 8 ϕ s2 6 A 3 ( ω ω 0 ) 3 + ϕ s1 32 ϕ s2 120 A 5 ( ω ω 0 ) 5

Metrics