Abstract

The energy scaling of ultrashort-pulse systems employing simultaneously the techniques of chirped-pulse amplification and passively combined divided-pulse amplification is analyzed both experimentally and numerically. The maximum achievable efficiency is investigated and fundamental limitations originating from gain saturation, self-phase modulation and depolarization are discussed. A solution to these limitations could be an active stabilization scheme, which would allow for the operation of every single fiber amplifier at higher pulse energies.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express19(1), 255–260 (2011).
    [CrossRef] [PubMed]
  2. A. Klenke, E. Seise, S. Demmler, J. Rothhardt, S. Breitkopf, J. Limpert, and A. Tünnermann, “Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy,” Opt. Express19(24), 24280–24285 (2011).
    [CrossRef] [PubMed]
  3. L. Daniault, M. Hanna, L. Lombard, Y. Zaouter, E. Mottay, D. Goular, P. Bourdon, F. Druon, and P. Georges, “Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers,” Opt. Lett.36(5), 621–623 (2011).
    [CrossRef] [PubMed]
  4. L. A. Siiman, W. Z. Chang, T. Zhou, and A. Galvanauskas, “Coherent femtosecond pulse combining of multiple parallel chirped pulse fiber amplifiers,” Opt. Express20(16), 18097–18116 (2012).
    [CrossRef] [PubMed]
  5. L. Daniault, M. Hanna, D. N. Papadopoulos, Y. Zaouter, E. Mottay, F. Druon, and P. Georges, “Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers,” Opt. Lett.36(20), 4023–4025 (2011).
    [CrossRef] [PubMed]
  6. S. Podleska, “Verfahren und Vorrichtung zum Strecken und Rekomprimieren von optischen Impulsen, insbesondere von Laserimpulsen hoher Intensität,” DE Patent 102006060703A1 (2006).
  7. S. Zhou, F. W. Wise, and D. G. Ouzounov, “Divided-pulse amplification of ultrashort pulses,” Opt. Lett.32(7), 871–873 (2007).
    [CrossRef] [PubMed]
  8. L. J. Kong, L. M. Zhao, S. Lefrancois, D. G. Ouzounov, C. X. Yang, and F. W. Wise, “Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier,” Opt. Lett.37(2), 253–255 (2012).
    [CrossRef] [PubMed]
  9. L. Daniault, M. Hanna, D. N. Papadopoulos, Y. Zaouter, E. Mottay, F. Druon, and P. Georges, “High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining,” Opt. Express20(19), 21627–21634 (2012).
    [CrossRef] [PubMed]
  10. Y. Zaouter, F. Guichard, L. Daniault, M. Hanna, F. Morin, C. Hönninger, E. Mottay, F. Druon, and P. Georges, “Femtosecond fiber chirped- and divided-pulse amplification system,” Opt. Lett.38(2), 106–108 (2013).
    [CrossRef] [PubMed]
  11. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011).
    [CrossRef] [PubMed]
  12. R. C. Jones, “A new calculus for the treatment of optical systems,” JOSA31(7), 488–493 (1941).
    [CrossRef]
  13. E. Collett, Field Guide to Polarization (SPIE Press, 2005).
  14. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys.34(8), 2346 (1963).
    [CrossRef]
  15. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  16. A. Klenke, E. Seise, J. Limpert, and A. Tünnermann, “Basic considerations on coherent combining of ultrashort laser pulses,” Opt. Express19(25), 25379–25387 (2011).
    [CrossRef] [PubMed]

2013 (1)

2012 (3)

2011 (6)

2007 (1)

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys.34(8), 2346 (1963).
[CrossRef]

1941 (1)

R. C. Jones, “A new calculus for the treatment of optical systems,” JOSA31(7), 488–493 (1941).
[CrossRef]

Bourdon, P.

Breitkopf, S.

Carstens, H.

Chang, W. Z.

Daniault, L.

Demmler, S.

Druon, F.

Eidam, T.

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys.34(8), 2346 (1963).
[CrossRef]

Galvanauskas, A.

Georges, P.

Goular, D.

Guichard, F.

Hädrich, S.

Hanna, M.

Hönninger, C.

Jansen, F.

Jauregui, C.

Jones, R. C.

R. C. Jones, “A new calculus for the treatment of optical systems,” JOSA31(7), 488–493 (1941).
[CrossRef]

Klenke, A.

Kong, L. J.

Lefrancois, S.

Limpert, J.

Lombard, L.

Morin, F.

Mottay, E.

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys.34(8), 2346 (1963).
[CrossRef]

Ouzounov, D. G.

Papadopoulos, D. N.

Rothhardt, J.

Seise, E.

Siiman, L. A.

Steinmetz, A.

Stutzki, F.

Tünnermann, A.

Wise, F. W.

Yang, C. X.

Zaouter, Y.

Zhao, L. M.

Zhou, S.

Zhou, T.

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys.34(8), 2346 (1963).
[CrossRef]

JOSA (1)

R. C. Jones, “A new calculus for the treatment of optical systems,” JOSA31(7), 488–493 (1941).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Other (3)

E. Collett, Field Guide to Polarization (SPIE Press, 2005).

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

S. Podleska, “Verfahren und Vorrichtung zum Strecken und Rekomprimieren von optischen Impulsen, insbesondere von Laserimpulsen hoher Intensität,” DE Patent 102006060703A1 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of (a) a Sagnac-type DPA setup (the experimental setup) and (b) a double-pass DPA setup.

Fig. 2
Fig. 2

(a) Compressed output power as a function of the launched pump power for the combined case (with a homogeneous power division into four pulses) and for each one of the four different amplification paths (R - reflected at PBS, T - transmitted at PBS) that can be traversed by an undivided pulse. (b) Measured autocorrelation traces of the compressed pulses for a maximum pulse energy of 0.5 mJ for both the combination of four pulses and for an undivided pulse case (RR).

Fig. 3
Fig. 3

(a) System efficiencies for both the low-energy case (4 MHz) and the high-energy case (20 kHz) and (b) photo-diode signal of the input pulses and of the saturated amplified pulses at the output of the amplifier for a combined output pulse energy of approximately 0.5 mJ.

Fig. 4
Fig. 4

Simulation of the total system efficiency in a double-pass geometry for a saturated pulse train as a function of the maximum B-integral Bmax and of the total output pulse energy Eout normalized to the saturation energy Esat for a division into two, four and eight pulses (a-c, d-f) with (a-c) Rs = Tp = 1 and (d-f) Rs = 0.99, Tp = 0.95 (HWP orientation angles |θ| = 22.5°, initial small-signal gain of G1 = 30 dB). For three energies, the saturated shape of the pulse train is shown above the plot (red: p-polarized, blue: s-polarized). Please note that the results displayed in this figure are general and, therefore, independent of the characteristics of the fiber.

Fig. 5
Fig. 5

Simulation of the total system efficiency in a Sagnac geometry for a saturated pulse train as a function of the maximum B-integral Bmax and the total output pulse energy Eout normalized to the saturation energy Esat for a division into two, four and eight pulses (a-c, d-f) with (a-c) Rs = Tp = 1 and (d-f) Rs = 0.99, Tp = 0.95 (HWP orientation angles |θ| = 22.5°, initial small-signal gain of G1 = 30 dB). For three energies, the saturated shape of the pulse train is shown above the plot (red: p-polarized, blue: s-polarized). Please note that the results displayed in this figure are general and, therefore, independent of the characteristics of the fiber.

Fig. 6
Fig. 6

Proposed setup for a DPA implementation with actively stabilized division and combination stages.

Tables (1)

Tables Icon

Table 1 Jones matrices of the optical elements used in the setup (θ - rotation angle of the optical axis with respect to the p-polarization-axis of the pulse, Tp - transmissivity of the p-component, Rs - reflectivity of the s-component)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A t =( A t p exp( i ϕ t p ) A t s exp( i ϕ t s ) ),
A T,t = J T J HWP ( θ m ) A t
A R,t = J R J HWP ( θ m ) A t .
A t ={ J T A T,t + J R A R,t t m for t> t m J T A T,t otherwise.
E out,t E sat =ln{ 1+[ exp( E in,t E sat )1 ] G t },
η E,t = E out,t E in,t E sat ln G t .
G t+1 =exp[ ( 1 η E,t )ln G t ].
B t B t' = | A t | 2 | A t' | 2 ( G t 1) ( G t' 1) ln G t' ln G t .
η tot = η spat η temp η lin .

Metrics