Abstract

We present a novel approach for the amplification of high peak power femtosecond laser pulses at a high repetition rate. This approach is based on an all-diode pumped burst mode laser scheme. In this scheme, pulse bursts with a total duration between 1 and 2 ms are be generated and amplified. They contain 50 to 2000 individual pulses equally spaced in time. The individual pulses have an initial duration of 350 fs and are stretched to 50 ps prior to amplification. The amplifier stage is based on Yb3+:CaF2 cooled to 100 K. In this amplifier, a total output energy in excess of 600 mJ per burst at a repetition rate of 10 Hz is demonstrated. For lower repetition rates the total output energy per burst can be scaled up to 915 mJ using a longer pump duration. This corresponds to an efficiency as high as 25% of extracted energy from absorbed pump energy. This is the highest efficiency, which has so far been demonstrated for a pulsed Yb3+:CaF2 amplifier.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
    [CrossRef]
  2. P. P. Wu and R. B. Miles, “High-energy pulse-burst laser system for megahertz-rate flow visualization,” Opt. Lett.25(22), 1639–1641 (2000).
    [CrossRef] [PubMed]
  3. B. S. Thurow, A. Satija, and K. Lynch, “Third-generation megahertz-rate pulse burst laser system,” Appl. Opt.48(11), 2086–2093 (2009).
    [CrossRef] [PubMed]
  4. M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process.69(7), 883–886 (1999).
    [CrossRef]
  5. W. Hu, Y. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process.98(2), 407–415 (2010).
    [CrossRef]
  6. R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE7585, 75850H (2010).
    [CrossRef]
  7. I. Will, H. I. Templin, S. Schreiber, and W. Sandner, “Photoinjector drive laser of the FLASH FEL,” Opt. Express19(24), 23770–23781 (2011).
    [CrossRef] [PubMed]
  8. F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett.37(15), 3231–3233 (2012).
    [CrossRef] [PubMed]
  9. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett.37(8), 1346–1348 (2012).
    [CrossRef] [PubMed]
  10. S. Breitkopf, A. Klenke, T. Gottschall, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett.37(24), 5169–5171 (2012).
    [CrossRef] [PubMed]
  11. H. Kalaycıoğlu, Y. B. Eldeniz, Ö. Akçaalan, S. Yavaş, K. Gürel, M. Efe, and F. Ö. Ilday, “1 mJ pulse bursts from a Yb-doped fiber amplifier,” Opt. Lett.37(13), 2586–2588 (2012).
    [CrossRef] [PubMed]
  12. M. Schulz, R. Riedel, A. Willner, S. Düsterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier,” Opt. Express20(5), 5038–5043 (2012).
    [CrossRef] [PubMed]
  13. F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorge, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance [Invited],” Opt. Mater. Express1(3), 489–502 (2011).
    [CrossRef]
  14. V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE8780, 87800G (2013).
    [CrossRef]
  15. V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+: CaF2: From isolated centers to clusters,” Phys. Rev. B78(8), 085131 (2008).
    [CrossRef]
  16. J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 degrees C and 200 degrees C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B29(9), 2493–2502 (2012).
    [CrossRef]
  17. M. Siebold, M. Loeser, J. Koerner, M. Wolf, J. Hein, C. Wandt, K. Klingebiel, S. Karsch, and U. Schramm, “Efficiency, Energy, and Power Scaling of Diode-Pumped, Short-Pulse Laser Amplifiers Using Yb-Doped Gain Media,” in ASSP Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AWB19.
    [CrossRef]
  18. J. Körner, J. Hein, H. Liebetrau, M. Kahle, R. Seifert, D. Klöpfel, and M. C. Kaluza, “Diode-pumped, cryogenically cooled, femtosecond burst mode laser,” Proc. SPIE8780, 878008 (2013).
    [CrossRef]
  19. G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett.21(6), 414–416 (1996).
    [CrossRef] [PubMed]
  20. J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).
  21. A. Pugzlys, G. Andriukaitis, A. Baltuska, L. Su, J. Xu, H. Li, R. Li, W. J. Lai, P. B. Phua, A. Marcinkevicius, M. E. Fermann, L. Giniūnas, R. Danielius, and S. Alisauskas, “Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett.34(13), 2075–2077 (2009).
    [CrossRef] [PubMed]
  22. S. Ricaud, F. Druon, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, M. Delaigue, Y. Zaouter, A. Courjaud, P. Georges, and E. Mottay, “Short-pulse and high-repetition-rate diode-pumped Yb:CaF2 regenerative amplifier,” Opt. Lett.35(14), 2415–2417 (2010).
    [CrossRef] [PubMed]

2013 (2)

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE8780, 87800G (2013).
[CrossRef]

J. Körner, J. Hein, H. Liebetrau, M. Kahle, R. Seifert, D. Klöpfel, and M. C. Kaluza, “Diode-pumped, cryogenically cooled, femtosecond burst mode laser,” Proc. SPIE8780, 878008 (2013).
[CrossRef]

2012 (7)

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

M. Schulz, R. Riedel, A. Willner, S. Düsterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier,” Opt. Express20(5), 5038–5043 (2012).
[CrossRef] [PubMed]

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett.37(8), 1346–1348 (2012).
[CrossRef] [PubMed]

H. Kalaycıoğlu, Y. B. Eldeniz, Ö. Akçaalan, S. Yavaş, K. Gürel, M. Efe, and F. Ö. Ilday, “1 mJ pulse bursts from a Yb-doped fiber amplifier,” Opt. Lett.37(13), 2586–2588 (2012).
[CrossRef] [PubMed]

F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett.37(15), 3231–3233 (2012).
[CrossRef] [PubMed]

J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 degrees C and 200 degrees C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B29(9), 2493–2502 (2012).
[CrossRef]

S. Breitkopf, A. Klenke, T. Gottschall, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett.37(24), 5169–5171 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (3)

S. Ricaud, F. Druon, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, M. Delaigue, Y. Zaouter, A. Courjaud, P. Georges, and E. Mottay, “Short-pulse and high-repetition-rate diode-pumped Yb:CaF2 regenerative amplifier,” Opt. Lett.35(14), 2415–2417 (2010).
[CrossRef] [PubMed]

W. Hu, Y. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process.98(2), 407–415 (2010).
[CrossRef]

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE7585, 75850H (2010).
[CrossRef]

2009 (2)

2008 (1)

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+: CaF2: From isolated centers to clusters,” Phys. Rev. B78(8), 085131 (2008).
[CrossRef]

2000 (1)

1999 (1)

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process.69(7), 883–886 (1999).
[CrossRef]

1996 (1)

Akçaalan, Ö.

Alisauskas, S.

Andriukaitis, G.

Baltuska, A.

Breitkopf, S.

Camy, P.

Chambaret, J. P.

Chen, K. P.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process.69(7), 883–886 (1999).
[CrossRef]

Cheriaux, G.

Courjaud, A.

Danczyk, S. A.

Danielius, R.

Delaigue, M.

Dimauro, L. F.

Divoky, M.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE8780, 87800G (2013).
[CrossRef]

Doualan, J. L.

Drescher, M.

Druon, F.

Düsterer, S.

Efe, M.

Eldeniz, Y. B.

Faatz, B.

Feldhaus, J.

Fermann, M. E.

Fuest, F.

Gabet, K. N.

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

Georges, P.

Giniunas, L.

Gord, J. R.

Gottschall, T.

Gürel, K.

Haloui, H.

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE7585, 75850H (2010).
[CrossRef]

Hein, J.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE8780, 87800G (2013).
[CrossRef]

J. Körner, J. Hein, H. Liebetrau, M. Kahle, R. Seifert, D. Klöpfel, and M. C. Kaluza, “Diode-pumped, cryogenically cooled, femtosecond burst mode laser,” Proc. SPIE8780, 878008 (2013).
[CrossRef]

J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 degrees C and 200 degrees C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B29(9), 2493–2502 (2012).
[CrossRef]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).

Herman, P. R.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process.69(7), 883–886 (1999).
[CrossRef]

Hu, W.

W. Hu, Y. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process.98(2), 407–415 (2010).
[CrossRef]

Ilday, F. Ö.

Jambunathan, V.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE8780, 87800G (2013).
[CrossRef]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).

Jauregui, C.

Jiang, N.

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

Kahle, M.

Kalaycioglu, H.

Kaluza, M.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).

Kaluza, M. C.

King, G.

W. Hu, Y. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process.98(2), 407–415 (2010).
[CrossRef]

Klenke, A.

Kloepfel, D.

Klöpfel, D.

J. Körner, J. Hein, H. Liebetrau, M. Kahle, R. Seifert, D. Klöpfel, and M. C. Kaluza, “Diode-pumped, cryogenically cooled, femtosecond burst mode laser,” Proc. SPIE8780, 878008 (2013).
[CrossRef]

Knappe, R.

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE7585, 75850H (2010).
[CrossRef]

Koerner, J.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE8780, 87800G (2013).
[CrossRef]

J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 degrees C and 200 degrees C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B29(9), 2493–2502 (2012).
[CrossRef]

Körner, J.

J. Körner, J. Hein, H. Liebetrau, M. Kahle, R. Seifert, D. Klöpfel, and M. C. Kaluza, “Diode-pumped, cryogenically cooled, femtosecond burst mode laser,” Proc. SPIE8780, 878008 (2013).
[CrossRef]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).

Lai, W. J.

Lapczyna, M.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process.69(7), 883–886 (1999).
[CrossRef]

Lempert, W. R.

F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett.37(15), 3231–3233 (2012).
[CrossRef] [PubMed]

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

Li, H.

Li, R.

Liebetrau, H.

Limpert, J.

Loeser, M.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).

Lucianetti, A.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE8780, 87800G (2013).
[CrossRef]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).

Lynch, K.

Marcinkevicius, A.

Marjoribanks, R. S.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process.69(7), 883–886 (1999).
[CrossRef]

Meyer, T. R.

Miles, R. B.

Miller, J. D.

Mocek, T.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE8780, 87800G (2013).
[CrossRef]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).

Moncorge, R.

Moncorgé, R.

Mottay, E.

Nebel, A.

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE7585, 75850H (2010).
[CrossRef]

Otto, H. J.

Papadopoulos, D. N.

Papageorge, M. J.

Patton, R. A.

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

Pellegrina, A.

Petit, V.

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+: CaF2: From isolated centers to clusters,” Phys. Rev. B78(8), 085131 (2008).
[CrossRef]

Phua, P. B.

Portier, X.

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+: CaF2: From isolated centers to clusters,” Phys. Rev. B78(8), 085131 (2008).
[CrossRef]

Prandolini, M. J.

Pugzlys, A.

Ricaud, S.

Riedel, R.

Rossbach, J.

Rousseau, P.

Roy, S.

Salin, F.

Sandner, W.

Satija, A.

Sawicka, M.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE8780, 87800G (2013).
[CrossRef]

Schramm, U.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).

Schreiber, S.

Schulz, M.

Seifert, A.

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE7585, 75850H (2010).
[CrossRef]

Seifert, R.

J. Körner, J. Hein, H. Liebetrau, M. Kahle, R. Seifert, D. Klöpfel, and M. C. Kaluza, “Diode-pumped, cryogenically cooled, femtosecond burst mode laser,” Proc. SPIE8780, 878008 (2013).
[CrossRef]

J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 degrees C and 200 degrees C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B29(9), 2493–2502 (2012).
[CrossRef]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).

Shin, Y.

W. Hu, Y. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process.98(2), 407–415 (2010).
[CrossRef]

Siebold, M.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).

Sikocinski, P.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE8780, 87800G (2013).
[CrossRef]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).

Slipchenko, M. N.

Su, L.

Sutton, J. A.

F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett.37(15), 3231–3233 (2012).
[CrossRef] [PubMed]

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

Tan, H. W.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process.69(7), 883–886 (1999).
[CrossRef]

Tavella, F.

Templin, H. I.

Thurow, B. S.

Tünnermann, A.

Vorholt, C.

Walker, B.

Weis, A.

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE7585, 75850H (2010).
[CrossRef]

Will, I.

Willner, A.

Wu, P. P.

Xu, J.

Yavas, S.

Zaouter, Y.

Appl. Opt. (1)

Appl. Phys. B (1)

R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process.69(7), 883–886 (1999).
[CrossRef]

W. Hu, Y. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process.98(2), 407–415 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (8)

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett.37(8), 1346–1348 (2012).
[CrossRef] [PubMed]

H. Kalaycıoğlu, Y. B. Eldeniz, Ö. Akçaalan, S. Yavaş, K. Gürel, M. Efe, and F. Ö. Ilday, “1 mJ pulse bursts from a Yb-doped fiber amplifier,” Opt. Lett.37(13), 2586–2588 (2012).
[CrossRef] [PubMed]

F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett.37(15), 3231–3233 (2012).
[CrossRef] [PubMed]

A. Pugzlys, G. Andriukaitis, A. Baltuska, L. Su, J. Xu, H. Li, R. Li, W. J. Lai, P. B. Phua, A. Marcinkevicius, M. E. Fermann, L. Giniūnas, R. Danielius, and S. Alisauskas, “Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett.34(13), 2075–2077 (2009).
[CrossRef] [PubMed]

S. Ricaud, F. Druon, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, M. Delaigue, Y. Zaouter, A. Courjaud, P. Georges, and E. Mottay, “Short-pulse and high-repetition-rate diode-pumped Yb:CaF2 regenerative amplifier,” Opt. Lett.35(14), 2415–2417 (2010).
[CrossRef] [PubMed]

S. Breitkopf, A. Klenke, T. Gottschall, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett.37(24), 5169–5171 (2012).
[CrossRef] [PubMed]

G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett.21(6), 414–416 (1996).
[CrossRef] [PubMed]

P. P. Wu and R. B. Miles, “High-energy pulse-burst laser system for megahertz-rate flow visualization,” Opt. Lett.25(22), 1639–1641 (2000).
[CrossRef] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. B (1)

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+: CaF2: From isolated centers to clusters,” Phys. Rev. B78(8), 085131 (2008).
[CrossRef]

Proc. SPIE (3)

J. Körner, J. Hein, H. Liebetrau, M. Kahle, R. Seifert, D. Klöpfel, and M. C. Kaluza, “Diode-pumped, cryogenically cooled, femtosecond burst mode laser,” Proc. SPIE8780, 878008 (2013).
[CrossRef]

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE7585, 75850H (2010).
[CrossRef]

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE8780, 87800G (2013).
[CrossRef]

Other (2)

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).

M. Siebold, M. Loeser, J. Koerner, M. Wolf, J. Hein, C. Wandt, K. Klingebiel, S. Karsch, and U. Schramm, “Efficiency, Energy, and Power Scaling of Diode-Pumped, Short-Pulse Laser Amplifiers Using Yb-Doped Gain Media,” in ASSP Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AWB19.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

20-pass amplifier setup: DM dichroic mirror; L1-L3 lenses; M1-M4 turning mirrors; SM1 spherical mirror f = 1250 mm; SM2 spherical mirror f = 625 mm; SM3 spherical mirror f = 1500 mm; SM4 spherical mirror f = 1500 mm.

Fig. 2
Fig. 2

Measured small signal gain in single pass as function of wavelength. The dashed line represents the calculated gain for the amplifier in case of 21% inversion based on cross sections given in [20]. Measurement done at 1 Hz.

Fig. 3
Fig. 3

Left: Total output energy of the amplifier as a function of the pump power for different number of pulses per burst n. The repetition rate within the burst is fixed at 1 MHz. The pump pulse starts 600 µs before the laser pulse arrival and lasts until the end of the burst. Right: Efficiency calculated as the ration of extracted energy to absorbed pump energy. Pump light absorption was calculated to be 70% using the cross sections in combination with the spectral distribution of the diode module output. Measurements done at 1 Hz.

Fig. 4
Fig. 4

Beam profiles, from left to right: Fluorescence distribution in the crystal at full power (measured in image plane in front of SM2); Seed beam in the crystal plane; Propagated output profile at 300 mJ in 1000 pulses; Propagated output profile at 600 mJ in 1000 pulses. Profiles measured in 1 Hz operation.

Fig. 5
Fig. 5

Left: Temporal energy distribution of the output pulse train for 1000 pulses in 1 ms at maximum output energy. High frequency modulations originate from the seeding fs front end laser system. Right: Integrated input and output spectrum of the burst. Measurements done at 1 Hz.

Tables (1)

Tables Icon

Table 1 Performance of the amplifier at 1 Hz with different intra burst repetition rates

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g=exp( N dop d[ σ e β σ a (1β)]).

Metrics