Abstract

The efficient tuning of microring resonator with the radially realigning nematic liquid crystal (NLC) cladding is presented. By applying the voltage on the in-plane annular electrodes, the produced electric field realigns the homeotropically-aligned NLC in the radial direction. Under the voltage sufficient for 90° NLC reorientation, the guided mode senses the consistent cladding index distribution along the microring waveguide with the maximal index change equal to the optical anisotropy of NLC. The resultant tuning of the resonant wavelength has a blue shift of 23.1nm for the TM mode and a red shift of 10.1nm for the TE mode. The tuning rates for the TM and TE modes are −1.95nm/V and 0.90nm/V. The proposed microring resonator owns the excellent features of wide tuning ranges and high tuning rates for the TM and TE modes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express16(19), 14421–14428 (2008).
    [CrossRef] [PubMed]
  2. G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol.17(7), 1248–1254 (1999).
    [CrossRef]
  3. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
    [CrossRef]
  4. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
    [CrossRef]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  6. B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
    [CrossRef]
  7. W. De Cort, J. Beeckman, R. James, F. A. Fernández, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett.34(13), 2054–2056 (2009).
    [CrossRef] [PubMed]
  8. T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
    [CrossRef]
  9. W. De Cort, J. Beeckman, R. James, F. A. Fernandez, R. Baets, and K. Neyts, “Tuning silicon-on-insulator ring resonators with in-plane switching liquid crystals,” J. Opt. Soc. Am. B28(1), 79–85 (2011).
    [CrossRef]
  10. W. De Cort, J. Beeckman, T. Claes, K. Neyts, and R. Baets, “Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding,” Opt. Lett.36(19), 3876–3878 (2011).
    [CrossRef] [PubMed]
  11. G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).
  12. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuit (McGraw-Hill, 1985).
  13. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
    [CrossRef]
  14. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
    [CrossRef]
  15. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol.1(1), 51–61 (2005).
    [CrossRef]
  16. T.-J. Wang, S.-C. Yang, T.-J. Chen, and B.-Y. Chen, “Wide tuning of SiN microring resonators by auto-realigning nematic liquid crystal,” Opt. Express20(14), 15853–15858 (2012).
    [CrossRef] [PubMed]
  17. T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photonics Technol. Lett.17(3), 582–584 (2005).
    [CrossRef]
  18. Z. Ge, T. X. Wu, R. Lu, X. Zhu, Q. Hong, and S.-T. Wu, “Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method,” J. Disp. Technol.1(2), 194–206 (2005).
    [CrossRef]
  19. M.-Y. Chen, S.-M. Hsu, and H.-C. Chang, “A finite-difference frequency-domain method for full-vectorial mode solutions of anisotropic optical waveguides with arbitrary permittivity tensor,” Opt. Express17(8), 5965–5979 (2009).
    [CrossRef] [PubMed]

2012

2011

2010

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

2009

2008

2007

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

2006

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

2005

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol.1(1), 51–61 (2005).
[CrossRef]

T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photonics Technol. Lett.17(3), 582–584 (2005).
[CrossRef]

Z. Ge, T. X. Wu, R. Lu, X. Zhu, Q. Hong, and S.-T. Wu, “Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method,” J. Disp. Technol.1(2), 194–206 (2005).
[CrossRef]

2003

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

1999

1990

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
[CrossRef]

1987

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Baets, R.

Beeckman, J.

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
[CrossRef]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Cai, T.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

Chang, H.-C.

Chen, B.-Y.

Chen, H.-L.

T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photonics Technol. Lett.17(3), 582–584 (2005).
[CrossRef]

Chen, M.-Y.

Chen, P.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

Chen, T.-J.

Claes, T.

Dalton, L.

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

De Cort, W.

Degl’innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
[CrossRef]

Fernandez, F. A.

Fernández, F. A.

Gauza, S.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol.1(1), 51–61 (2005).
[CrossRef]

Ge, Z.

Z. Ge, T. X. Wu, R. Lu, X. Zhu, Q. Hong, and S.-T. Wu, “Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method,” J. Disp. Technol.1(2), 194–206 (2005).
[CrossRef]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Gunn, G.

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Hane, K.

He, S.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

Hong, Q.

Z. Ge, T. X. Wu, R. Lu, X. Zhu, Q. Hong, and S.-T. Wu, “Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method,” J. Disp. Technol.1(2), 194–206 (2005).
[CrossRef]

Hsu, S.-M.

Huang, Y.-H.

T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photonics Technol. Lett.17(3), 582–584 (2005).
[CrossRef]

James, R.

Kanamori, Y.

Kokubun, Y.

Lawson, R.

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

Lenz, G.

Li, J.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol.1(1), 51–61 (2005).
[CrossRef]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Liu, Q.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Lu, R.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol.1(1), 51–61 (2005).
[CrossRef]

Z. Ge, T. X. Wu, R. Lu, X. Zhu, Q. Hong, and S.-T. Wu, “Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method,” J. Disp. Technol.1(2), 194–206 (2005).
[CrossRef]

Madsen, C. K.

Maune, B.

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Neyts, K.

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Scherer, A.

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Shi, Y.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
[CrossRef]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Takahashi, K.

Wang, T.-J.

T.-J. Wang, S.-C. Yang, T.-J. Chen, and B.-Y. Chen, “Wide tuning of SiN microring resonators by auto-realigning nematic liquid crystal,” Opt. Express20(14), 15853–15858 (2012).
[CrossRef] [PubMed]

T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photonics Technol. Lett.17(3), 582–584 (2005).
[CrossRef]

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Wen, C.-H.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol.1(1), 51–61 (2005).
[CrossRef]

Wu, S.-T.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol.1(1), 51–61 (2005).
[CrossRef]

Z. Ge, T. X. Wu, R. Lu, X. Zhu, Q. Hong, and S.-T. Wu, “Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method,” J. Disp. Technol.1(2), 194–206 (2005).
[CrossRef]

Wu, T. X.

Z. Ge, T. X. Wu, R. Lu, X. Zhu, Q. Hong, and S.-T. Wu, “Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method,” J. Disp. Technol.1(2), 194–206 (2005).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yang, S.-C.

Zhu, X.

Z. Ge, T. X. Wu, R. Lu, X. Zhu, Q. Hong, and S.-T. Wu, “Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method,” J. Disp. Technol.1(2), 194–206 (2005).
[CrossRef]

Appl. Phys. Lett.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
[CrossRef]

IEEE Photonics Technol. Lett.

T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photonics Technol. Lett.17(3), 582–584 (2005).
[CrossRef]

J. Disp. Technol.

Z. Ge, T. X. Wu, R. Lu, X. Zhu, Q. Hong, and S.-T. Wu, “Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method,” J. Disp. Technol.1(2), 194–206 (2005).
[CrossRef]

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol.1(1), 51–61 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Photonics

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuit (McGraw-Hill, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross-sectional view of the microring ridge waveguide under no applied voltage; (b)(c) top view of the proposed microring resonator (b) under no applied voltage; (c) with the applied voltage sufficient for 90° NLC reorientation.

Fig. 2
Fig. 2

Tilt angle distribution of NLC molecules for the applied voltage: (a) V = 0; (b) V = 7V, (c) V = 20V; (d) V = 100V.

Fig. 3
Fig. 3

Dependence of the simulated resonant wavelength on the voltage for the annular electrode with the shape of 3/4 ring, 7/8 ring, and the whole ring, for (a) the TM mode; (b) the TE mode.

Fig. 4
Fig. 4

Photographs of polarized optical microscope for the NLC-cladded microring resonator with the applied voltage of 0V, 4.5V, 16V, and 20V.

Fig. 5
Fig. 5

Dependence of the measured resonant wavelength on the voltage for (a) the TM mode; (b) the TE mode. (Inset: the transmission spectrums for the voltages of 0V and 16V.)

Metrics