Abstract

The angular light scattering profile of microscopic particles significantly depends on their morphological parameters, such as size and shape. This dependency is widely used in state-of-the-art flow cytometry methods for particle classification. We introduce a new spectrally encoded angular light scattering method, with potential application in scanning flow cytometry. We show that a one-to-one wavelength-to-angle mapping enables the measurement of the angular dependence of scattered light from microscopic particles over a wide dynamic range. Improvement in dynamic range is obtained by equalizing the angular dependence of scattering via wavelength equalization. Continuous angular spectrum is obtained without mechanical scanning enabling single-shot measurement. Using this information, particle morphology can be determined with improved accuracy. We derive and experimentally verify an analytic wavelength-to-angle mapping model, facilitating rapid data processing. As a proof of concept, we demonstrate the method’s capability of distinguishing differently sized polystyrene beads. The combination of this technique with time-stretch dispersive Fourier transform offers real-time and high-throughput (high frame rate) measurements and renders the method suitable for integration in standard flow cytometers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Davies, Flow Cytometry: Principles and Applications (Humana, 2007, chap. Cell Sorting by Flow Cytometry).
  2. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt.38, 3651–3661 (1999).
    [CrossRef]
  3. V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum.71(1), 243–255 (2000).
    [CrossRef]
  4. K. Singh, C. Capjack, W. Rozmus, and C. Backhouse, “Reply [Analysis of cellular structure by light scattering measurements in a new cytometer design based on a liquid-core waveguide],” IEE Proc. Nanobiotechnol.153(5), 135–135 (2006).
    [CrossRef]
  5. J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008).
    [CrossRef]
  6. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
    [CrossRef] [PubMed]
  7. K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
    [CrossRef] [PubMed]
  8. K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett.93(3), 031106 (2008).
    [CrossRef]
  9. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
    [CrossRef]
  10. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
    [CrossRef] [PubMed]
  11. A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express4(9), 1618 (2013).
    [CrossRef] [PubMed]
  12. D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photon.6(7), 463–468 (2012).
    [CrossRef]
  13. B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
    [CrossRef] [PubMed]
  14. E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).
  15. Bangs Laboratories Inc., “Fluorescent polymer mircrospheres,” http://www.bangslabs.com . Accessed: 09/06/2013.
  16. G. Mie, “Beitr¨age zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330, 377–445 (1908).
    [CrossRef]
  17. J. A. Stratton, Electromagnetic Theory (McGraw Hill, 1941).
  18. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  19. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photon.7(2), 102–112 (2013).
    [CrossRef]
  20. P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett.35(19), 1661–1662 (1999).
    [CrossRef]
  21. M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett.24(1), 1–3 (1999).
    [CrossRef]
  22. E. D. Diebold, N. K. Hon, Z. W. Tan, J. Chou, T. Sienicki, C. Wang, and B. Jalali, “Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide,” Opt. Express19(24), 23809–23817 (2011).
    [CrossRef] [PubMed]

2013 (2)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photon.7(2), 102–112 (2013).
[CrossRef]

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express4(9), 1618 (2013).
[CrossRef] [PubMed]

2012 (4)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photon.6(7), 463–468 (2012).
[CrossRef]

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

2011 (1)

2009 (2)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

2008 (2)

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett.93(3), 031106 (2008).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008).
[CrossRef]

2006 (1)

K. Singh, C. Capjack, W. Rozmus, and C. Backhouse, “Reply [Analysis of cellular structure by light scattering measurements in a new cytometer design based on a liquid-core waveguide],” IEE Proc. Nanobiotechnol.153(5), 135–135 (2006).
[CrossRef]

2000 (1)

V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum.71(1), 243–255 (2000).
[CrossRef]

1999 (3)

1908 (1)

G. Mie, “Beitr¨age zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330, 377–445 (1908).
[CrossRef]

Adam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

Azaña, J.

Backhouse, C.

K. Singh, C. Capjack, W. Rozmus, and C. Backhouse, “Reply [Analysis of cellular structure by light scattering measurements in a new cytometer design based on a liquid-core waveguide],” IEE Proc. Nanobiotechnol.153(5), 135–135 (2006).
[CrossRef]

Bhushan, A.

P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett.35(19), 1661–1662 (1999).
[CrossRef]

Brackbill, N.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Brown, R.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

Capjack, C.

K. Singh, C. Capjack, W. Rozmus, and C. Backhouse, “Reply [Analysis of cellular structure by light scattering measurements in a new cytometer design based on a liquid-core waveguide],” IEE Proc. Nanobiotechnol.153(5), 135–135 (2006).
[CrossRef]

Carballar, A.

Chen, C.

Chen, E.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

Chou, J.

E. D. Diebold, N. K. Hon, Z. W. Tan, J. Chou, T. Sienicki, C. Wang, and B. Jalali, “Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide,” Opt. Express19(24), 23809–23817 (2011).
[CrossRef] [PubMed]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008).
[CrossRef]

Coppinger, F.

P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett.35(19), 1661–1662 (1999).
[CrossRef]

Davies, D.

D. Davies, Flow Cytometry: Principles and Applications (Humana, 2007, chap. Cell Sorting by Flow Cytometry).

Di Carlo, D.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Dias, F.

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

Diebold, E. D.

Drezek, R.

Dudley, J. M.

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

Dunn, A.

Fard, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

Fard, A. M.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Genty, G.

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photon.7(2), 102–112 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett.93(3), 031106 (2008).
[CrossRef]

Gossett, D.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

Gossett, D. R.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).

Herink, G.

D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photon.6(7), 463–468 (2012).
[CrossRef]

Hon, N. K.

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Jalali, B.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photon.7(2), 102–112 (2013).
[CrossRef]

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express4(9), 1618 (2013).
[CrossRef] [PubMed]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photon.6(7), 463–468 (2012).
[CrossRef]

E. D. Diebold, N. K. Hon, Z. W. Tan, J. Chou, T. Sienicki, C. Wang, and B. Jalali, “Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide,” Opt. Express19(24), 23809–23817 (2011).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008).
[CrossRef]

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett.93(3), 031106 (2008).
[CrossRef]

P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett.35(19), 1661–1662 (1999).
[CrossRef]

Kelkar, P.

P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett.35(19), 1661–1662 (1999).
[CrossRef]

Kudlinski, A.

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

Lacourt, P.

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

Larger, L.

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

Liu, Y.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

Lonappan, C. K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Mahjoubfar, A.

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express4(9), 1618 (2013).
[CrossRef] [PubMed]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

Malik, O.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

Maltsev, V. P.

V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum.71(1), 243–255 (2000).
[CrossRef]

Merolla, J.

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Beitr¨age zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330, 377–445 (1908).
[CrossRef]

Muriel, M. A.

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Mussot, A.

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

Niazi, K. R.

Rabizadeh, S.

Richards-Kortum, R.

Ropers, C.

D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photon.6(7), 463–468 (2012).
[CrossRef]

Rozmus, W.

K. Singh, C. Capjack, W. Rozmus, and C. Backhouse, “Reply [Analysis of cellular structure by light scattering measurements in a new cytometer design based on a liquid-core waveguide],” IEE Proc. Nanobiotechnol.153(5), 135–135 (2006).
[CrossRef]

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Sarkhosh, N.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

Sienicki, T.

Singh, K.

K. Singh, C. Capjack, W. Rozmus, and C. Backhouse, “Reply [Analysis of cellular structure by light scattering measurements in a new cytometer design based on a liquid-core waveguide],” IEE Proc. Nanobiotechnol.153(5), 135–135 (2006).
[CrossRef]

Solli, D.

D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photon.6(7), 463–468 (2012).
[CrossRef]

Solli, D. R.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008).
[CrossRef]

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett.93(3), 031106 (2008).
[CrossRef]

Sollier, E.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw Hill, 1941).

Sylvestre, T.

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

Tan, Z. W.

Tsia, K. K.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Wang, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

E. D. Diebold, N. K. Hon, Z. W. Tan, J. Chou, T. Sienicki, C. Wang, and B. Jalali, “Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide,” Opt. Express19(24), 23809–23817 (2011).
[CrossRef] [PubMed]

Wetzel, B.

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

Ann. Phys. (1)

G. Mie, “Beitr¨age zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330, 377–445 (1908).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008).
[CrossRef]

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett.93(3), 031106 (2008).
[CrossRef]

Biomed. Opt. Express (1)

Electron. Lett. (1)

P. Kelkar, F. Coppinger, A. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett.35(19), 1661–1662 (1999).
[CrossRef]

IEE Proc. Nanobiotechnol. (1)

K. Singh, C. Capjack, W. Rozmus, and C. Backhouse, “Reply [Analysis of cellular structure by light scattering measurements in a new cytometer design based on a liquid-core waveguide],” IEE Proc. Nanobiotechnol.153(5), 135–135 (2006).
[CrossRef]

Nat. Photon. (2)

D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photon.6(7), 463–468 (2012).
[CrossRef]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photon.7(2), 102–112 (2013).
[CrossRef]

Nature (1)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum.71(1), 243–255 (2000).
[CrossRef]

Sci. Rep. (2)

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep.2, 445 (2012).
[CrossRef] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. Lacourt, J. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep.2, 882 (2012).
[CrossRef] [PubMed]

Other (5)

E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).

Bangs Laboratories Inc., “Fluorescent polymer mircrospheres,” http://www.bangslabs.com . Accessed: 09/06/2013.

J. A. Stratton, Electromagnetic Theory (McGraw Hill, 1941).

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

D. Davies, Flow Cytometry: Principles and Applications (Humana, 2007, chap. Cell Sorting by Flow Cytometry).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

An optical pulse is created by a broadband pulsed laser. The power spectrum of the illuminating light is modified with an optical filter to provide more power to optical frequencies corresponding to side scattering angles. Next, the broadband optical pulse is converted into a collimated one-dimensional rainbow using a pair of diffraction gratings. A telescope setup is used to adjust the beam size. The resulting one-dimensional rainbow is focused onto particles under test, by a high-NA objective lens (60×, NA=0.7). The particle is hence illuminated by light at different angles and scattered light is measured at a single, fixed angle. The output is then directly fed into an optical spectrum analyzer (OSA) via a multimode fiber.

Fig. 2
Fig. 2

The wavelength-to-beam-displacement mapping shows the agreement between measured data, ray tracing simulations and analytic calculations.

Fig. 3
Fig. 3

The wavelength-to-angle mapping measurement shows the agreement with the analytic calculation obtained by employing Eqs. (1) and (2), with the entrance pupil diameter P and the correction factor dcorr as the only variable fitting parameters.

Fig. 4
Fig. 4

Minimum resolvable angle Δθ (in degrees) with respect to typical detector aperture (or fiber core diameter) values d and the probe-to-target distance L. The white area corresponds to Δθ = 1°.

Fig. 5
Fig. 5

Proof-of-principle measurement of the angular scattering profiles for 7.32 μm and 9.94 μm (nominal) diameter polystyrene beads, taken from single OSA traces. The error bars correspond to the angular resolvability analysis provided in section 2, while the (dashed) lines represent measurement curve fits. As opposed to conventional flow cytometers, which measure the scattering at only two points (forward- and side-scattering), SEALSperforms single shot measurement of the continuous angular spectrum. Here, the differently sized beads can easily be distinguished by their different number of scattering lobes (spatial frequencies). The additional information contained in the continuous spectrum improves particle classification [24].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y ( λ ) = M D tan ( α β ) 1 + tan ( α β ) tan ( α ) ,
θ ( λ ) = tan 1 ( 2 P ( y ( λ ) y center + d corr ) tan ( sin 1 ( N A ) ) ) ,

Metrics