Abstract

We present a high-order UWB pulses generator based on a microwave photonic filter which provides a set of positive and negative samples by using the slicing of an incoherent optical source and the phase inversion in a Mach-Zehnder modulator. The simple scalability and high reconfigurability of the system permit a better accomplishment of the FCC requirements. Moreover, the proposed scheme permits an easy adaptation to pulse amplitude modulation, bi phase modulation, pulse shape modulation and pulse position modulation. The flexibility of the scheme for being adaptable to multilevel modulation formats permits to increase the transmission bit rate by using hybrid modulation formats.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003).
    [CrossRef]
  2. J. Yao, “Photonics for ultrawideband communications,” IEEE Commun. Mag.41, 66–74 (2003).
  3. F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
    [CrossRef]
  4. J. Shao and J. Sun, “Photonic ultrawideband impulse radio shape modulation based on dual-filter tuning,” Opt. Lett.38(2), 232–234 (2013).
    [CrossRef] [PubMed]
  5. Y. Dai and J. Yao, “High-chip-count UWB biphase coding for multiuser UWB-over-fiber system,” J. Lightwave Technol.27(11), 1448–1453 (2009).
    [CrossRef]
  6. Y. Dai and J. Yao, “Optical generation of binary phase-coded direct-sequence UWB signals using a multichannel chirped fiber Bragg grating,” J. Lightwave Technol.26(15), 2513–2520 (2008).
    [CrossRef]
  7. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett.31(21), 3083–3085 (2006).
    [CrossRef] [PubMed]
  8. Y. Yu, J. Dong, X. Li, and X. Zhang, “UWB monocycle generation and Bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photonics J.4(2), 327–339 (2012).
    [CrossRef]
  9. K. Tan, D. Marpaung, R. Pant, F. Gao, E. Li, J. Wang, D. Y. Choi, S. Madden, B. Luther-Davies, J. Sun, and B. J. Eggleton, “Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide,” Opt. Express21(2), 2003–2011 (2013).
    [CrossRef] [PubMed]
  10. S. Pan and J. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol.28(16), 2445–2455 (2010).
    [CrossRef]
  11. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express17(7), 5023–5032 (2009).
    [CrossRef] [PubMed]
  12. W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, and D. Bimberg, “Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion,” Opt. Express20(18), 20222–20227 (2012).
    [CrossRef] [PubMed]
  13. M. Abtahi and L. A. Rusch, “Arbitrary UWB waveform generator supporting OOK, PPM and PSK modulation formats,” in Proceedings of IEEE Conference on Microwave Photonics (Institute of Electrical and Electronics Engineers, Montreal, 2010), pp. 294–297.
    [CrossRef]
  14. P. Li, H. Chen, M. Chen, and S. Xie, “Gigabit/s Photonic Generation, Modulation, and Transmission for a Reconfigurable Impulse Radio UWB Over Fiber System,” IEEE Photonics Journal4(3), 805–816 (2012).
    [CrossRef]
  15. P. Li, H. Chen, X. Wang, H. Yu, M. Chen, and S. Xie, “Photonic Generation and Transmission of 2-Gbit/s Power-Efficient IR-UWB Signals Employing an Electro-Optic Phase Modulator,” IEEE Photon. Technol. Lett.25(2), 144–146 (2013).
    [CrossRef]
  16. K. Tan, J. Shao, J. Sun, and J. Wang, “Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems,” Opt. Express20(2), 1184–1201 (2012).
    [CrossRef] [PubMed]
  17. M. Bolea, J. Mora, B. Ortega, and J. Mora, “High-order UWB pulse generation based on a microwave photonic filter using incoherent optical sources,” in Proceedings of IEEE Conference on Microwave Photonics (Institute of Electrical and Electronics Engineers, Singapore, 2011), pp. 462–465.
    [CrossRef]
  18. J. Capmany, J. Mora, B. Ortega, and D. Pastor, “Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients,” Opt. Express13(5), 1412–1417 (2005).
    [CrossRef] [PubMed]
  19. L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs – A tutorial,” J. Lightwave Technol.29(4), 554–570 (2011).
    [CrossRef]
  20. C. Dorrer, “Statistical analysis of incoherent pulse shaping,” Opt. Express17(5), 3341–3352 (2009).
    [CrossRef] [PubMed]
  21. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Photonic arbitrary waveform generation applicable to multiband UWB communications,” Opt. Express18(25), 26259–26267 (2010).
    [CrossRef] [PubMed]

2013 (3)

2012 (4)

K. Tan, J. Shao, J. Sun, and J. Wang, “Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems,” Opt. Express20(2), 1184–1201 (2012).
[CrossRef] [PubMed]

W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, and D. Bimberg, “Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion,” Opt. Express20(18), 20222–20227 (2012).
[CrossRef] [PubMed]

P. Li, H. Chen, M. Chen, and S. Xie, “Gigabit/s Photonic Generation, Modulation, and Transmission for a Reconfigurable Impulse Radio UWB Over Fiber System,” IEEE Photonics Journal4(3), 805–816 (2012).
[CrossRef]

Y. Yu, J. Dong, X. Li, and X. Zhang, “UWB monocycle generation and Bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photonics J.4(2), 327–339 (2012).
[CrossRef]

2011 (1)

2010 (2)

2009 (3)

2008 (1)

2006 (2)

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett.31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
[CrossRef]

2005 (1)

2003 (2)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003).
[CrossRef]

J. Yao, “Photonics for ultrawideband communications,” IEEE Commun. Mag.41, 66–74 (2003).

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003).
[CrossRef]

Bimberg, D.

Blais, S.

Bolea, M.

Capmany, J.

Chen, H.

P. Li, H. Chen, X. Wang, H. Yu, M. Chen, and S. Xie, “Photonic Generation and Transmission of 2-Gbit/s Power-Efficient IR-UWB Signals Employing an Electro-Optic Phase Modulator,” IEEE Photon. Technol. Lett.25(2), 144–146 (2013).
[CrossRef]

P. Li, H. Chen, M. Chen, and S. Xie, “Gigabit/s Photonic Generation, Modulation, and Transmission for a Reconfigurable Impulse Radio UWB Over Fiber System,” IEEE Photonics Journal4(3), 805–816 (2012).
[CrossRef]

Chen, M.

P. Li, H. Chen, X. Wang, H. Yu, M. Chen, and S. Xie, “Photonic Generation and Transmission of 2-Gbit/s Power-Efficient IR-UWB Signals Employing an Electro-Optic Phase Modulator,” IEEE Photon. Technol. Lett.25(2), 144–146 (2013).
[CrossRef]

P. Li, H. Chen, M. Chen, and S. Xie, “Gigabit/s Photonic Generation, Modulation, and Transmission for a Reconfigurable Impulse Radio UWB Over Fiber System,” IEEE Photonics Journal4(3), 805–816 (2012).
[CrossRef]

Choi, D. Y.

Coldren, L. A.

Dai, Y.

Dong, J.

Y. Yu, J. Dong, X. Li, and X. Zhang, “UWB monocycle generation and Bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photonics J.4(2), 327–339 (2012).
[CrossRef]

Dorrer, C.

Eggleton, B. J.

Gao, F.

Guzzon, R. S.

Hofmann, W.

Johansson, L.

Krishnamachari, U.

Li, E.

Li, P.

P. Li, H. Chen, X. Wang, H. Yu, M. Chen, and S. Xie, “Photonic Generation and Transmission of 2-Gbit/s Power-Efficient IR-UWB Signals Employing an Electro-Optic Phase Modulator,” IEEE Photon. Technol. Lett.25(2), 144–146 (2013).
[CrossRef]

P. Li, H. Chen, M. Chen, and S. Xie, “Gigabit/s Photonic Generation, Modulation, and Transmission for a Reconfigurable Impulse Radio UWB Over Fiber System,” IEEE Photonics Journal4(3), 805–816 (2012).
[CrossRef]

Li, W.

Li, X.

Y. Yu, J. Dong, X. Li, and X. Zhang, “UWB monocycle generation and Bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photonics J.4(2), 327–339 (2012).
[CrossRef]

Luther-Davies, B.

Madden, S.

Marpaung, D.

Mora, J.

Nicholes, S. C.

Norberg, E. J.

Ortega, B.

Pan, S.

Pant, R.

Pastor, D.

Ristic, S.

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003).
[CrossRef]

Shao, J.

Sun, J.

Tan, K.

Wang, J.

Wang, L. X.

Wang, Q.

Wang, X.

P. Li, H. Chen, X. Wang, H. Yu, M. Chen, and S. Xie, “Photonic Generation and Transmission of 2-Gbit/s Power-Efficient IR-UWB Signals Employing an Electro-Optic Phase Modulator,” IEEE Photon. Technol. Lett.25(2), 144–146 (2013).
[CrossRef]

Xie, S.

P. Li, H. Chen, X. Wang, H. Yu, M. Chen, and S. Xie, “Photonic Generation and Transmission of 2-Gbit/s Power-Efficient IR-UWB Signals Employing an Electro-Optic Phase Modulator,” IEEE Photon. Technol. Lett.25(2), 144–146 (2013).
[CrossRef]

P. Li, H. Chen, M. Chen, and S. Xie, “Gigabit/s Photonic Generation, Modulation, and Transmission for a Reconfigurable Impulse Radio UWB Over Fiber System,” IEEE Photonics Journal4(3), 805–816 (2012).
[CrossRef]

Yao, J.

Yu, H.

P. Li, H. Chen, X. Wang, H. Yu, M. Chen, and S. Xie, “Photonic Generation and Transmission of 2-Gbit/s Power-Efficient IR-UWB Signals Employing an Electro-Optic Phase Modulator,” IEEE Photon. Technol. Lett.25(2), 144–146 (2013).
[CrossRef]

Yu, Y.

Y. Yu, J. Dong, X. Li, and X. Zhang, “UWB monocycle generation and Bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photonics J.4(2), 327–339 (2012).
[CrossRef]

Zeng, F.

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett.31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
[CrossRef]

Zhang, X.

Y. Yu, J. Dong, X. Li, and X. Zhang, “UWB monocycle generation and Bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photonics J.4(2), 327–339 (2012).
[CrossRef]

Zhu, N. H.

IEEE Commun. Mag. (1)

J. Yao, “Photonics for ultrawideband communications,” IEEE Commun. Mag.41, 66–74 (2003).

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Li, H. Chen, X. Wang, H. Yu, M. Chen, and S. Xie, “Photonic Generation and Transmission of 2-Gbit/s Power-Efficient IR-UWB Signals Employing an Electro-Optic Phase Modulator,” IEEE Photon. Technol. Lett.25(2), 144–146 (2013).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
[CrossRef]

IEEE Photonics J. (1)

Y. Yu, J. Dong, X. Li, and X. Zhang, “UWB monocycle generation and Bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photonics J.4(2), 327–339 (2012).
[CrossRef]

IEEE Photonics Journal (1)

P. Li, H. Chen, M. Chen, and S. Xie, “Gigabit/s Photonic Generation, Modulation, and Transmission for a Reconfigurable Impulse Radio UWB Over Fiber System,” IEEE Photonics Journal4(3), 805–816 (2012).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (7)

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express17(7), 5023–5032 (2009).
[CrossRef] [PubMed]

W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, and D. Bimberg, “Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion,” Opt. Express20(18), 20222–20227 (2012).
[CrossRef] [PubMed]

C. Dorrer, “Statistical analysis of incoherent pulse shaping,” Opt. Express17(5), 3341–3352 (2009).
[CrossRef] [PubMed]

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Photonic arbitrary waveform generation applicable to multiband UWB communications,” Opt. Express18(25), 26259–26267 (2010).
[CrossRef] [PubMed]

K. Tan, J. Shao, J. Sun, and J. Wang, “Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems,” Opt. Express20(2), 1184–1201 (2012).
[CrossRef] [PubMed]

K. Tan, D. Marpaung, R. Pant, F. Gao, E. Li, J. Wang, D. Y. Choi, S. Madden, B. Luther-Davies, J. Sun, and B. J. Eggleton, “Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide,” Opt. Express21(2), 2003–2011 (2013).
[CrossRef] [PubMed]

J. Capmany, J. Mora, B. Ortega, and D. Pastor, “Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients,” Opt. Express13(5), 1412–1417 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (2)

M. Abtahi and L. A. Rusch, “Arbitrary UWB waveform generator supporting OOK, PPM and PSK modulation formats,” in Proceedings of IEEE Conference on Microwave Photonics (Institute of Electrical and Electronics Engineers, Montreal, 2010), pp. 294–297.
[CrossRef]

M. Bolea, J. Mora, B. Ortega, and J. Mora, “High-order UWB pulse generation based on a microwave photonic filter using incoherent optical sources,” in Proceedings of IEEE Conference on Microwave Photonics (Institute of Electrical and Electronics Engineers, Singapore, 2011), pp. 462–465.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental layout of the photonic filter. Inset: Optical spectrum of an optical channel at the output of the AWG1 and AWG2.

Fig. 2
Fig. 2

Optical pulses normalized after SMF, (a) positive and (b) negative pulse. Inset: corresponding spectra of electrical pulses.

Fig. 3
Fig. 3

Experimental (black line) and theoretical (blue line) results of the optical source power spectral density, waveforms and corresponding electrical spectrum for monocycle (a), (b) and (c); doublet (d), (e) and (f); triplet (g), (h) and (i); quadruplet (j), (k) and (l), respectively. Electrical transfer function of the equivalent microwave photonic filter (red dash line) and FCC mask (black dash line) plotted on top of the electrical spectra.

Fig. 4
Fig. 4

Four levels PSM and PPM formats. PSM with (a) monocycle, (b) doublet, (c) triplet and (d) quadruplet pulses. PPM with time delays for levels related to (e) 00, (f) 01, (g) 10 and (h) 11.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S(ω ω n )= P n π 1 δω e ( ω ω o nΔω δω ) 2 .
H RF (Ω)= n=1 N P n (1) k e jΩ τ n n=1 N P n e ( β 2 LδωΩ 2 ) 2 .
FSR= 1 Δτ = 1 β 2 LΔω .

Metrics