Abstract

In laser speckle contrast imaging, it was usually suggested that speckle size should exceed two camera pixels to eliminate the spatial averaging effect. In this work, we show the benefit of enhancing signal to noise ratio by correcting the speckle contrast at small speckle size. Through simulations and experiments, we demonstrated that local speckle contrast, even at speckle size much smaller than one pixel size, can be corrected through dividing the original speckle contrast by the static speckle contrast. Moreover, we show a 50% higher signal to noise ratio of the speckle contrast image at speckle size below 0.5 pixel size than that at speckle size of two pixels. These results indicate the possibility of selecting a relatively large aperture to simultaneously ensure sufficient light intensity and high accuracy and signal to noise ratio, making the laser speckle contrast imaging more flexible.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
    [CrossRef] [PubMed]
  2. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
    [CrossRef] [PubMed]
  3. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110 (2005).
    [CrossRef]
  4. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008).
    [CrossRef] [PubMed]
  5. P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express17(16), 13904–13917 (2009).
    [CrossRef] [PubMed]
  6. S. Liu, P. Li, and Q. Luo, “Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit,” Opt. Express16(19), 14321–14329 (2008).
    [CrossRef] [PubMed]
  7. O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009 (2011).
    [CrossRef] [PubMed]
  8. W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008).
    [CrossRef] [PubMed]
  9. C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
    [CrossRef] [PubMed]
  10. O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt.15(2), 027015 (2010).
    [CrossRef] [PubMed]
  11. A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front Neuroenergetics2, 128 (2010).
    [CrossRef] [PubMed]
  12. P. Lemaillet, D. D. Duncan, A. Lompado, M. Ibrahim, Q. D. Nguyen, and J. C. Ramella-Roman, “Retinal spectral imaging and blood flow measurement,” J. Innov. Opt. Health Sci.3(04), 255–265 (2010).
    [CrossRef]
  13. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett.28(1), 28–30 (2003).
    [CrossRef] [PubMed]
  14. P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt.16(9), 090502 (2011).
    [CrossRef] [PubMed]
  15. A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
    [CrossRef] [PubMed]
  16. Y. C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
    [CrossRef] [PubMed]
  17. R. Bezemer, M. Legrand, E. Klijn, M. Heger, I. C. Post, T. M. van Gulik, D. Payen, and C. Ince, “Real-time assessment of renal cortical microvascular perfusion heterogeneities using near-infrared laser speckle imaging,” Opt. Express18(14), 15054–15061 (2010).
    [CrossRef] [PubMed]
  18. A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
    [CrossRef] [PubMed]
  19. N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
    [CrossRef] [PubMed]
  20. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Co., 2006).
  21. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett.33(24), 2886–2888 (2008).
    [CrossRef] [PubMed]
  22. O. Thompson, M. Andrews, and E. Hirst, “Correction for spatial averaging in laser speckle contrast analysis,” Biomed. Opt. Express2(4), 1021–1029 (2011).
    [CrossRef] [PubMed]
  23. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A25(1), 9–15 (2008).
    [CrossRef] [PubMed]
  24. S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, “Noise in laser speckle correlation and imaging techniques,” Opt. Express18(14), 14519–14534 (2010).
    [CrossRef] [PubMed]
  25. D. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating speckle dynamics,” J. Opt. Soc. Am. A25(1), 231–237 (2008).
    [CrossRef] [PubMed]
  26. J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt.15(1), 016003 (2010).
    [CrossRef] [PubMed]
  27. L. Song and D. S. Elson, “Effect of signal intensity and camera quantization on laser speckle contrast analysis,” Biomed. Opt. Express4(1), 89–104 (2013).
    [CrossRef] [PubMed]
  28. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A25(8), 2088–2094 (2008).
    [CrossRef] [PubMed]
  29. Y. Piederrière, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, and J. Lortrian, “Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering,” Opt. Express12(1), 176–188 (2004).
    [CrossRef] [PubMed]
  30. J. C. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: implications for measurements of blood-flow dynamics,” Biomed. Opt. Express4(10), 1883–1889 (2013).
    [CrossRef] [PubMed]
  31. A. E. Ennos, “Speckle interferometry” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975).
  32. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
    [CrossRef] [PubMed]

2013 (2)

2011 (5)

O. Thompson, M. Andrews, and E. Hirst, “Correction for spatial averaging in laser speckle contrast analysis,” Biomed. Opt. Express2(4), 1021–1029 (2011).
[CrossRef] [PubMed]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009 (2011).
[CrossRef] [PubMed]

C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
[CrossRef] [PubMed]

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt.16(9), 090502 (2011).
[CrossRef] [PubMed]

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

2010 (8)

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt.15(1), 016003 (2010).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt.15(2), 027015 (2010).
[CrossRef] [PubMed]

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front Neuroenergetics2, 128 (2010).
[CrossRef] [PubMed]

P. Lemaillet, D. D. Duncan, A. Lompado, M. Ibrahim, Q. D. Nguyen, and J. C. Ramella-Roman, “Retinal spectral imaging and blood flow measurement,” J. Innov. Opt. Health Sci.3(04), 255–265 (2010).
[CrossRef]

S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, “Noise in laser speckle correlation and imaging techniques,” Opt. Express18(14), 14519–14534 (2010).
[CrossRef] [PubMed]

R. Bezemer, M. Legrand, E. Klijn, M. Heger, I. C. Post, T. M. van Gulik, D. Payen, and C. Ince, “Real-time assessment of renal cortical microvascular perfusion heterogeneities using near-infrared laser speckle imaging,” Opt. Express18(14), 15054–15061 (2010).
[CrossRef] [PubMed]

2009 (2)

P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express17(16), 13904–13917 (2009).
[CrossRef] [PubMed]

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
[CrossRef] [PubMed]

2008 (8)

2005 (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110 (2005).
[CrossRef]

2004 (1)

2003 (1)

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
[CrossRef] [PubMed]

Andermann, M. L.

Andrews, M.

Andrews, M. K.

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt.15(2), 027015 (2010).
[CrossRef] [PubMed]

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110 (2005).
[CrossRef]

Bezemer, R.

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett.28(1), 28–30 (2003).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bolay, H.

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
[CrossRef] [PubMed]

Buck, A.

Calcinaghi, N.

Cariou, J.

Cerbino, R.

Choi, B.

J. C. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: implications for measurements of blood-flow dynamics,” Biomed. Opt. Express4(10), 1883–1889 (2013).
[CrossRef] [PubMed]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009 (2011).
[CrossRef] [PubMed]

Y. C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
[CrossRef] [PubMed]

Cuccia, D.

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009 (2011).
[CrossRef] [PubMed]

Dale, A. M.

Deng, J.

C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
[CrossRef] [PubMed]

Devor, A.

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110 (2005).
[CrossRef]

Dreier, J. P.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
[CrossRef] [PubMed]

Duncan, D. D.

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett.28(1), 28–30 (2003).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110 (2005).
[CrossRef]

Elson, D. S.

Fox, D. J.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

Fuentes-Garcia, A.

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110 (2005).
[CrossRef]

Gopal, A.

Guern, Y.

Haiss, F.

He, H.

C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
[CrossRef] [PubMed]

Hecht, N.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
[CrossRef] [PubMed]

Heger, M.

Hirst, E.

Huang, Y. C.

Y. C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
[CrossRef] [PubMed]

Ibrahim, M.

P. Lemaillet, D. D. Duncan, A. Lompado, M. Ibrahim, Q. D. Nguyen, and J. C. Ramella-Roman, “Retinal spectral imaging and blood flow measurement,” J. Innov. Opt. Health Sci.3(04), 255–265 (2010).
[CrossRef]

Ince, C.

Jiang, C.

C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Klijn, E.

Kurth-Nelson, Z. L.

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front Neuroenergetics2, 128 (2010).
[CrossRef] [PubMed]

Le Brun, G.

Le Jeune, B.

Legrand, M.

Lemaillet, P.

P. Lemaillet, D. D. Duncan, A. Lompado, M. Ibrahim, Q. D. Nguyen, and J. C. Ramella-Roman, “Retinal spectral imaging and blood flow measurement,” J. Innov. Opt. Health Sci.3(04), 255–265 (2010).
[CrossRef]

Li, P.

C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
[CrossRef] [PubMed]

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt.15(1), 016003 (2010).
[CrossRef] [PubMed]

S. Liu, P. Li, and Q. Luo, “Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit,” Opt. Express16(19), 14321–14329 (2008).
[CrossRef] [PubMed]

Li, Y.

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt.16(9), 090502 (2011).
[CrossRef] [PubMed]

Liu, Q.

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt.16(9), 090502 (2011).
[CrossRef] [PubMed]

Liu, R.

C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
[CrossRef] [PubMed]

Liu, S.

Lompado, A.

P. Lemaillet, D. D. Duncan, A. Lompado, M. Ibrahim, Q. D. Nguyen, and J. C. Ramella-Roman, “Retinal spectral imaging and blood flow measurement,” J. Innov. Opt. Health Sci.3(04), 255–265 (2010).
[CrossRef]

Lortrian, J.

Lu, H.

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt.16(9), 090502 (2011).
[CrossRef] [PubMed]

Luo, Q.

C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
[CrossRef] [PubMed]

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt.15(1), 016003 (2010).
[CrossRef] [PubMed]

S. Liu, P. Li, and Q. Luo, “Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit,” Opt. Express16(19), 14321–14329 (2008).
[CrossRef] [PubMed]

Luo, W.

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt.15(1), 016003 (2010).
[CrossRef] [PubMed]

Mendez-Aguilar, E.

Miao, P.

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt.16(9), 090502 (2011).
[CrossRef] [PubMed]

Moskowitz, M. A.

Murari, K.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

Nelson, J. S.

Y. C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
[CrossRef] [PubMed]

Newman, E. A.

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front Neuroenergetics2, 128 (2010).
[CrossRef] [PubMed]

Nguyen, Q. D.

P. Lemaillet, D. D. Duncan, A. Lompado, M. Ibrahim, Q. D. Nguyen, and J. C. Ramella-Roman, “Retinal spectral imaging and blood flow measurement,” J. Innov. Opt. Health Sci.3(04), 255–265 (2010).
[CrossRef]

Parthasarathy, A. B.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

Pathak, A. P.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

Payen, D.

Peuser, J.

Piederrière, Y.

Ponticorvo, A.

W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008).
[CrossRef] [PubMed]

Post, I. C.

Qiu, J.

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt.15(1), 016003 (2010).
[CrossRef] [PubMed]

Ramella-Roman, J. C.

P. Lemaillet, D. D. Duncan, A. Lompado, M. Ibrahim, Q. D. Nguyen, and J. C. Ramella-Roman, “Retinal spectral imaging and blood flow measurement,” J. Innov. Opt. Health Sci.3(04), 255–265 (2010).
[CrossRef]

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

Rege, A.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

Richards, L. M.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

Ringold, T. L.

Y. C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
[CrossRef] [PubMed]

Salazar-Hermenegildo, N.

Scheffold, F.

Seifert, A.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

Skipetrov, S. E.

Song, L.

Srienc, A. I.

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front Neuroenergetics2, 128 (2010).
[CrossRef] [PubMed]

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110 (2005).
[CrossRef]

Thakor, N. V.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

Thompson, O.

Thompson, O. B.

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt.15(2), 027015 (2010).
[CrossRef] [PubMed]

Tom, W. J.

W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008).
[CrossRef] [PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

Tong, S.

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt.16(9), 090502 (2011).
[CrossRef] [PubMed]

Vajkoczy, P.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
[CrossRef] [PubMed]

van Gulik, T. M.

Völker, A. C.

Wang, J.

C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
[CrossRef] [PubMed]

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt.15(1), 016003 (2010).
[CrossRef] [PubMed]

Wang, R. K.

Wang, Y.

C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
[CrossRef] [PubMed]

Weber, B.

Weber, E. L.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
[CrossRef] [PubMed]

Wells-Gray, E. M.

Woitzik, J.

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
[CrossRef] [PubMed]

Wyss, M. T.

Yang, O.

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009 (2011).
[CrossRef] [PubMed]

Zakharov, P.

Zhang, H.

C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
[CrossRef] [PubMed]

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt.15(1), 016003 (2010).
[CrossRef] [PubMed]

Zhang, X.

Zhou, F.

C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
[CrossRef] [PubMed]

Zunzunegui, C.

Biomed. Opt. Express (3)

Front Neuroenergetics (1)

A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front Neuroenergetics2, 128 (2010).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (9)

C. Jiang, H. Zhang, J. Wang, Y. Wang, H. He, R. Liu, F. Zhou, J. Deng, P. Li, and Q. Luo, “Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging,” J. Biomed. Opt.16(11), 116008 (2011).
[CrossRef] [PubMed]

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt.15(2), 027015 (2010).
[CrossRef] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
[CrossRef] [PubMed]

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt.16(9), 090502 (2011).
[CrossRef] [PubMed]

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011).
[CrossRef] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt.15(1), 016003 (2010).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009 (2011).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

J. Innov. Opt. Health Sci. (1)

P. Lemaillet, D. D. Duncan, A. Lompado, M. Ibrahim, Q. D. Nguyen, and J. C. Ramella-Roman, “Retinal spectral imaging and blood flow measurement,” J. Innov. Opt. Health Sci.3(04), 255–265 (2010).
[CrossRef]

J. Opt. Soc. Am. A (3)

Lasers Surg. Med. (1)

Y. C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008).
[CrossRef] [PubMed]

Neurosurg. Focus (1)

N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110 (2005).
[CrossRef]

Other (2)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Co., 2006).

A. E. Ennos, “Speckle interferometry” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Speckle contrast analysis of simulated time-integrated dynamic speckles. (a) Dependence of mean speckle contrast (μK) and (b) dependence of mean flow index (μT/τ) on m in Eq. (1) and speckle size S. (c) Calibrated μK and (d) calibrated μT/τ as functions of m and speckle size. (e) Dependence of relative noise in speckle contrast (σK/μK) and (f) dependence of relative noise in flow index (σT/τ/μT/τ) on m and speckle size.

Fig. 2
Fig. 2

Speckle contrast analysis of dynamic speckles produced from 1% intralipid solution. (a) Dependence of mean speckle contrast (μK) and (b) dependence of mean flow index (μT/τ) on flow speed and speckle size S. (c) Calibrated μK and (d) calibrated μT/τ as functions of flow speed and speckle size. (e) Dependence of relative noise in speckle contrast (σK/μK) and (f) dependence of relative noise in flow index (σT/τ/μT/τ) on flow speed and speckle size.

Fig. 3
Fig. 3

In vivo blood flow imaging of mouse cortex with laser speckle. Images in the first line are the mean speckle contrast (μK) images at various speckle sizes. Images in the second line are the calibrated mean speckle contrast (μK/β) images corresponding to those in the first line. Images in the bottom are the relative noise in speckle contrast (σK/μK) images, calculated from 50 frames of successive speckle contrast images, at various speckle sizes.

Fig. 4
Fig. 4

(a) Magnified mean speckle contrast (μK) images (first column) and μK/β images (second column) in the ROI in Fig. 3. Granule-like noises become more and more apparent in the μK and the μK/β images with increasing speckle size, as shown in the circular ROI. (b) Profiles of μK (solid lines) and μK/β (dashed lines) along the dashed line indicated in Fig. 4(a) at different speckle sizes. μK and μK/β curves at speckle size <1 pixel were used as the reference curves to compare with those at other speckle sizes. The μK/β curves at different speckle sizes show good agreement. (c) Profiles of calibrated μK ± σK, i.e. (μK ± σK)/β, along the dashed line indicated in Fig. 4(a) at different speckle sizes. μK/β and σK/β at a certain speckle size are calculated from 50 frames of successive speckle contrast images.

Fig. 5
Fig. 5

Simulation investigation of the impacts of speckle size and region size on β calibration. The calibration is valid when region size is above 1.5 times larger than the speckle size.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{ Z( k )= 2ln X 1 cos( 2π X 2 + π 2 k1 n1 ) T( k )=CDF[ Z( k ) ] φ( k )=exp[ i2πmT( k ) ] .
K 2 = exp( 2 x 1 )+2 x 1 1 2 x 1 2 .
( K/β ) 2 = exp( 2 x 2 )+2 x 2 1 2 x 2 2 .
r s =1.2λ( 1+M )F.

Metrics