Abstract

We report on the generation of a frequency comb around 4330 nm with an unprecedented coherence of the single teeth. Generating the comb within a Ti:sapphire laser cavity by a difference-frequency process and using a phase-lock scheme based on direct digital synthesis, we achieve a tooth linewidth of 2.0 kHz in a 1-s timescale (750 Hz in 20 ms). The generated per-tooth power of 1 μW ranks this comb among the best ever realized in the mid-infrared in terms of power spectral density.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
    [CrossRef]
  2. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett.24, 881–883 (1999).
    [CrossRef]
  3. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  4. P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol.20, 052001 (2009).
    [CrossRef]
  5. L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express19, 3155–3162 (2011).
    [CrossRef] [PubMed]
  6. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science306, 2063–2068 (2004).
    [CrossRef] [PubMed]
  7. S. Avino, A. Giorgini, M. Salza, M. Fabian, G. Gagliardi, and P. De Natale, “Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities,” Appl. Phys. Lett.102, 201116 (2013).
    [CrossRef]
  8. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection,” Phys. Rev. Lett.107, 270802 (2011).
    [CrossRef]
  9. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photon.6, 440–449 (2012).
    [CrossRef]
  10. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature492, 229–233 (2012).
    [CrossRef] [PubMed]
  11. A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett.38, 2636–2639 (2013).
    [CrossRef] [PubMed]
  12. D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett.30, 997–999 (2005).
    [CrossRef] [PubMed]
  13. I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17, 9582–9587 (2009).
    [CrossRef] [PubMed]
  14. I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett.35, 3616–3618 (2010).
    [CrossRef] [PubMed]
  15. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett.34, 1330–1332 (2009).
    [CrossRef] [PubMed]
  16. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett.36, 2275–2277 (2011).
    [CrossRef] [PubMed]
  17. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-doppler spectroscopy,” Opt. Express20, 9178–9186 (2012).
    [CrossRef] [PubMed]
  18. S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, and P. De Natale, “Direct link of a mid-infrared QCL to a frequency comb by optical injection,” Opt. Lett.37, 1011–1013 (2012).
    [CrossRef] [PubMed]
  19. I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
    [CrossRef]
  20. S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett.32, 988–990 (2007).
    [CrossRef] [PubMed]
  21. A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, and M. Marangoni, “Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb,” Opt. Lett.37, 4083–4085 (2012).
    [CrossRef] [PubMed]
  22. P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys.8, 1–8 (2006).
    [CrossRef]
  23. A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett.37, 2232–2234 (2012).
    [CrossRef] [PubMed]
  24. S. A. Meek, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Fourier transform spectroscopy around 3 μm with a broad difference frequency comb,” Appl. Phys. B (2013).
    [CrossRef]
  25. F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, and H. A. Schuessler, “High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator,” Opt. Lett.38, 2360–2362 (2013).
    [CrossRef] [PubMed]
  26. T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett.36, 4020–4022 (2011).
    [CrossRef] [PubMed]
  27. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun.35, 441–444 (1980).
    [CrossRef]
  28. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem.3, 175–205 (2010).
    [CrossRef]
  29. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
    [CrossRef]
  30. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A84, 062513 (2011).
    [CrossRef]
  31. L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys.11, 055049 (2009).
    [CrossRef]

2013 (5)

S. Avino, A. Giorgini, M. Salza, M. Fabian, G. Gagliardi, and P. De Natale, “Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities,” Appl. Phys. Lett.102, 201116 (2013).
[CrossRef]

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett.38, 2636–2639 (2013).
[CrossRef] [PubMed]

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

S. A. Meek, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Fourier transform spectroscopy around 3 μm with a broad difference frequency comb,” Appl. Phys. B (2013).
[CrossRef]

F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, and H. A. Schuessler, “High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator,” Opt. Lett.38, 2360–2362 (2013).
[CrossRef] [PubMed]

2012 (6)

2011 (5)

2010 (2)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem.3, 175–205 (2010).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett.35, 3616–3618 (2010).
[CrossRef] [PubMed]

2009 (4)

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett.34, 1330–1332 (2009).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17, 9582–9587 (2009).
[CrossRef] [PubMed]

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol.20, 052001 (2009).
[CrossRef]

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys.11, 055049 (2009).
[CrossRef]

2007 (1)

2006 (1)

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys.8, 1–8 (2006).
[CrossRef]

2005 (1)

2004 (1)

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science306, 2063–2068 (2004).
[CrossRef] [PubMed]

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

1999 (2)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
[CrossRef]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett.24, 881–883 (1999).
[CrossRef]

1982 (1)

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

1980 (1)

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun.35, 441–444 (1980).
[CrossRef]

Adler, F.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem.3, 175–205 (2010).
[CrossRef]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett.34, 1330–1332 (2009).
[CrossRef] [PubMed]

Akikusa, N.

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

Avino, S.

S. Avino, A. Giorgini, M. Salza, M. Fabian, G. Gagliardi, and P. De Natale, “Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities,” Appl. Phys. Lett.102, 201116 (2013).
[CrossRef]

Bartalini, S.

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, and P. De Natale, “Direct link of a mid-infrared QCL to a frequency comb by optical injection,” Opt. Lett.37, 1011–1013 (2012).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection,” Phys. Rev. Lett.107, 270802 (2011).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett.35, 3616–3618 (2010).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17, 9582–9587 (2009).
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett.32, 988–990 (2007).
[CrossRef] [PubMed]

Baumann, E.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A84, 062513 (2011).
[CrossRef]

Bismuto, A.

Blaser, S.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature492, 229–233 (2012).
[CrossRef] [PubMed]

Borri, S.

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, and P. De Natale, “Direct link of a mid-infrared QCL to a frequency comb by optical injection,” Opt. Lett.37, 1011–1013 (2012).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection,” Phys. Rev. Lett.107, 270802 (2011).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett.35, 3616–3618 (2010).
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett.32, 988–990 (2007).
[CrossRef] [PubMed]

Byrd, J.

Cancio, P.

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, and P. De Natale, “Direct link of a mid-infrared QCL to a frequency comb by optical injection,” Opt. Lett.37, 1011–1013 (2012).
[CrossRef] [PubMed]

L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express19, 3155–3162 (2011).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection,” Phys. Rev. Lett.107, 270802 (2011).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett.35, 3616–3618 (2010).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17, 9582–9587 (2009).
[CrossRef] [PubMed]

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol.20, 052001 (2009).
[CrossRef]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett.32, 988–990 (2007).
[CrossRef] [PubMed]

D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett.30, 997–999 (2005).
[CrossRef] [PubMed]

Cappelli, F.

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, and P. De Natale, “Direct link of a mid-infrared QCL to a frequency comb by optical injection,” Opt. Lett.37, 1011–1013 (2012).
[CrossRef] [PubMed]

Carr, L. D.

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys.11, 055049 (2009).
[CrossRef]

Coddington, I.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A84, 062513 (2011).
[CrossRef]

Consolino, L.

Cossel, K. C.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem.3, 175–205 (2010).
[CrossRef]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett.34, 1330–1332 (2009).
[CrossRef] [PubMed]

Couillaud, B.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun.35, 441–444 (1980).
[CrossRef]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

de Cumis, M. S.

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

De Natale, P.

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

S. Avino, A. Giorgini, M. Salza, M. Fabian, G. Gagliardi, and P. De Natale, “Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities,” Appl. Phys. Lett.102, 201116 (2013).
[CrossRef]

S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, and P. De Natale, “Direct link of a mid-infrared QCL to a frequency comb by optical injection,” Opt. Lett.37, 1011–1013 (2012).
[CrossRef] [PubMed]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-doppler spectroscopy,” Opt. Express20, 9178–9186 (2012).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection,” Phys. Rev. Lett.107, 270802 (2011).
[CrossRef]

L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express19, 3155–3162 (2011).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett.35, 3616–3618 (2010).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17, 9582–9587 (2009).
[CrossRef] [PubMed]

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol.20, 052001 (2009).
[CrossRef]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett.32, 988–990 (2007).
[CrossRef] [PubMed]

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys.8, 1–8 (2006).
[CrossRef]

D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett.30, 997–999 (2005).
[CrossRef] [PubMed]

De Rosa, M.

De Tommasi, E.

DeMille, D.

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys.11, 055049 (2009).
[CrossRef]

Diddams, S. A.

T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett.36, 4020–4022 (2011).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Eikema, K. S. E.

Eliyahu, D.

Elliott, D. S.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

Fabian, M.

S. Avino, A. Giorgini, M. Salza, M. Fabian, G. Gagliardi, and P. De Natale, “Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities,” Appl. Phys. Lett.102, 201116 (2013).
[CrossRef]

Faist, J.

Felinto, D.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science306, 2063–2068 (2004).
[CrossRef] [PubMed]

Fermann, M.

Fermann, M. E.

Gagliardi, G.

S. Avino, A. Giorgini, M. Salza, M. Fabian, G. Gagliardi, and P. De Natale, “Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities,” Appl. Phys. Lett.102, 201116 (2013).
[CrossRef]

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys.8, 1–8 (2006).
[CrossRef]

Galli, I.

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, and P. De Natale, “Direct link of a mid-infrared QCL to a frequency comb by optical injection,” Opt. Lett.37, 1011–1013 (2012).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection,” Phys. Rev. Lett.107, 270802 (2011).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett.35, 3616–3618 (2010).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17, 9582–9587 (2009).
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett.32, 988–990 (2007).
[CrossRef] [PubMed]

Gambetta, A.

Gatti, D.

Gianfrani, L.

Giorgetta, F. R.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A84, 062513 (2011).
[CrossRef]

Giorgini, A.

S. Avino, A. Giorgini, M. Salza, M. Fabian, G. Gagliardi, and P. De Natale, “Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities,” Appl. Phys. Lett.102, 201116 (2013).
[CrossRef]

Giusfredi, G.

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, and P. De Natale, “Direct link of a mid-infrared QCL to a frequency comb by optical injection,” Opt. Lett.37, 1011–1013 (2012).
[CrossRef] [PubMed]

L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express19, 3155–3162 (2011).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection,” Phys. Rev. Lett.107, 270802 (2011).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett.35, 3616–3618 (2010).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17, 9582–9587 (2009).
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett.32, 988–990 (2007).
[CrossRef] [PubMed]

D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett.30, 997–999 (2005).
[CrossRef] [PubMed]

Guelachvili, G.

S. A. Meek, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Fourier transform spectroscopy around 3 μm with a broad difference frequency comb,” Appl. Phys. B (2013).
[CrossRef]

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

S. A. Meek, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Fourier transform spectroscopy around 3 μm with a broad difference frequency comb,” Appl. Phys. B (2013).
[CrossRef]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photon.6, 440–449 (2012).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
[CrossRef]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett.24, 881–883 (1999).
[CrossRef]

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun.35, 441–444 (1980).
[CrossRef]

Hartl, I.

Holzwarth, R.

F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, and H. A. Schuessler, “High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator,” Opt. Lett.38, 2360–2362 (2013).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
[CrossRef]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett.24, 881–883 (1999).
[CrossRef]

Hugi, A.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature492, 229–233 (2012).
[CrossRef] [PubMed]

Hundertmark, H.

Ilchenko, V. S.

Inguscio, M.

Jiang, J.

Johnson, T. A.

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Kolomenskii, A. A.

Krems, R. V.

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys.11, 055049 (2009).
[CrossRef]

Lawall, J. R.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science306, 2063–2068 (2004).
[CrossRef] [PubMed]

Leveque, T.

Liang, W.

Liu, H. C.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature492, 229–233 (2012).
[CrossRef] [PubMed]

Maddaloni, P.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-doppler spectroscopy,” Opt. Express20, 9178–9186 (2012).
[CrossRef] [PubMed]

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol.20, 052001 (2009).
[CrossRef]

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys.8, 1–8 (2006).
[CrossRef]

Malara, P.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys.8, 1–8 (2006).
[CrossRef]

Maleki, L.

Marangoni, M.

Marian, A.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science306, 2063–2068 (2004).
[CrossRef] [PubMed]

Matsko, A. B.

Mazzotti, D.

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, and P. De Natale, “Direct link of a mid-infrared QCL to a frequency comb by optical injection,” Opt. Lett.37, 1011–1013 (2012).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection,” Phys. Rev. Lett.107, 270802 (2011).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett.35, 3616–3618 (2010).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17, 9582–9587 (2009).
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett.32, 988–990 (2007).
[CrossRef] [PubMed]

D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett.30, 997–999 (2005).
[CrossRef] [PubMed]

Meek, S. A.

S. A. Meek, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Fourier transform spectroscopy around 3 μm with a broad difference frequency comb,” Appl. Phys. B (2013).
[CrossRef]

Mefford, W.

Mills, A.

Mohr, C.

Montori, A.

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

Mosca, S.

Neely, T. W.

Newbury, N. R.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A84, 062513 (2011).
[CrossRef]

Picqué, N.

S. A. Meek, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Fourier transform spectroscopy around 3 μm with a broad difference frequency comb,” Appl. Phys. B (2013).
[CrossRef]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photon.6, 440–449 (2012).
[CrossRef]

Poisson, A.

S. A. Meek, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Fourier transform spectroscopy around 3 μm with a broad difference frequency comb,” Appl. Phys. B (2013).
[CrossRef]

Prevedelli, M.

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Reichert, J.

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
[CrossRef]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett.24, 881–883 (1999).
[CrossRef]

Ricciardi, I.

Rocco, A.

Roy, R.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

Ruehl, A.

Salza, M.

S. Avino, A. Giorgini, M. Salza, M. Fabian, G. Gagliardi, and P. De Natale, “Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities,” Appl. Phys. Lett.102, 201116 (2013).
[CrossRef]

Savchenkov, A. A.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photon.6, 440–449 (2012).
[CrossRef]

Schuessler, H. A.

Schunemann, P. G.

Seidel, D.

Smith, S. J.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

Sorokin, E.

Sorokina, I. T.

Stowe, M. C.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science306, 2063–2068 (2004).
[CrossRef] [PubMed]

Strohaber, J.

Swann, W. C.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A84, 062513 (2011).
[CrossRef]

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem.3, 175–205 (2010).
[CrossRef]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett.34, 1330–1332 (2009).
[CrossRef] [PubMed]

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
[CrossRef]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett.24, 881–883 (1999).
[CrossRef]

Villares, G.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature492, 229–233 (2012).
[CrossRef] [PubMed]

Vodopyanov, K. L.

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Yamanishi, M.

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

Ye, J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem.3, 175–205 (2010).
[CrossRef]

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys.11, 055049 (2009).
[CrossRef]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett.34, 1330–1332 (2009).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science306, 2063–2068 (2004).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Zhu, F.

Zolot, A. M.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A84, 062513 (2011).
[CrossRef]

Zondy, J.-J.

Annu. Rev. Anal. Chem. (1)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem.3, 175–205 (2010).
[CrossRef]

Appl. Phys. B (1)

S. A. Meek, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Fourier transform spectroscopy around 3 μm with a broad difference frequency comb,” Appl. Phys. B (2013).
[CrossRef]

Appl. Phys. Lett. (2)

I. Galli, M. S. de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, and P. De Natale, “Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy,” Appl. Phys. Lett.102, 121117 (2013).
[CrossRef]

S. Avino, A. Giorgini, M. Salza, M. Fabian, G. Gagliardi, and P. De Natale, “Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities,” Appl. Phys. Lett.102, 201116 (2013).
[CrossRef]

Meas. Sci. Technol. (1)

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol.20, 052001 (2009).
[CrossRef]

Nat. Photon. (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photon.6, 440–449 (2012).
[CrossRef]

Nature (1)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature492, 229–233 (2012).
[CrossRef] [PubMed]

New J. Phys. (2)

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys.8, 1–8 (2006).
[CrossRef]

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys.11, 055049 (2009).
[CrossRef]

Opt. Commun. (1)

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun.35, 441–444 (1980).
[CrossRef]

Opt. Express (3)

Opt. Lett. (12)

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett.35, 3616–3618 (2010).
[CrossRef] [PubMed]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett.34, 1330–1332 (2009).
[CrossRef] [PubMed]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett.36, 2275–2277 (2011).
[CrossRef] [PubMed]

S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, and P. De Natale, “Direct link of a mid-infrared QCL to a frequency comb by optical injection,” Opt. Lett.37, 1011–1013 (2012).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett.24, 881–883 (1999).
[CrossRef]

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett.38, 2636–2639 (2013).
[CrossRef] [PubMed]

D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett.30, 997–999 (2005).
[CrossRef] [PubMed]

F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, and H. A. Schuessler, “High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator,” Opt. Lett.38, 2360–2362 (2013).
[CrossRef] [PubMed]

T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett.36, 4020–4022 (2011).
[CrossRef] [PubMed]

A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett.37, 2232–2234 (2012).
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett.32, 988–990 (2007).
[CrossRef] [PubMed]

A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, and M. Marangoni, “Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb,” Opt. Lett.37, 4083–4085 (2012).
[CrossRef] [PubMed]

Phys. Rev. A (2)

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A84, 062513 (2011).
[CrossRef]

Phys. Rev. Lett. (3)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection,” Phys. Rev. Lett.107, 270802 (2011).
[CrossRef]

Science (1)

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science306, 2063–2068 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: an Yb fiber amplifier (FA) is seeded by the NIR portion of the spectrum of the NIR-comb. The amplifier output is used as signal in a MgO:PPLN multi-period crystal to generate MIR radiation, where the pump is the Ti:Sa intracavity radiation. The MIR-comb beam is coupled into a high-finesse cavity and beaten with a room temperature distributed feedback quantum cascade laser (DFB-QCL) for characterization purposes. PLL: phase-locked loop, DDS: direct digital synthesis, APD: avalanche photodiode, BSp: beam splitter, PZT: piezoelectric transducer, DM: dichroic mirror, MgO:PPLN: periodically poled lithium niobate crystal doped with magnesium oxide, GM: gold mirror, OC: output coupler, Pol. det.: polarization detection and electronic control loop, BSt: beam stopper, M: mirror, SM: spherical mirror, L: lens, Ti:Sa: titanium sapphire crystal, PD: photovoltaic detector.

Fig. 2
Fig. 2

NIR-comb spectrum before and after the Yb fiber amplifier. The 1.6-nm-wide gray region indicates the portion of the spectrum effectively involved in the MIR-comb generation, essentially limited by the phase-matching bandwidth of the DFG process.

Fig. 3
Fig. 3

Transmission peaks of the high-finesse cavity recorded for different cavity detunings. a) The peak corresponding to eq. (6), recorded in two different ECDL phase lock schemes: with DDS implemented (black line, 30 kHz FWHM), and with simple phase lock to the nearest NIR-comb tooh (red line, 400 kHz FWHM). b) 1-FSR-wide cavity scan (inset) with zooms on consecutive longitudinal resonances spaced by FSR/3 = 50 MHz.

Fig. 4
Fig. 4

FNPSD related to the MIR-comb radiation retrieved by using the high-finesse cavity as frequency-to-amplitude converter. The spectrum analyzer was set in max-hold acquisition mode to be sure to collect the maximum amplitude for each frequency interval. The spectrum is compensated for the 9.4 kHz cavity cutoff.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f p = ν p N p f r f o
f Y = ν Y N Y f r f o
ν p = ( f Y + f o ) ( N p N s N Y ) + N p f r + f o = ( ν Y N Y f r ) ( N p N s N Y ) + N p f r + f o
ν i = ν p N s f r f o = ( N p N s N Y ) ν Y
δ ν i , m = ( N p N s N Y ) δ ν Y + m δ f r
f r = 20 3 FSR = 20 3 c 2 L 0
W pk = ( f r 20 3 c 2 L n ) M tot
f r 20 3 c 2 ( L 0 + λ / 3 ) = 1.44 kHz

Metrics