Abstract

We experimentally investigate intermodal nonlinear interactions, such as Raman scattering and four wave mixing. The fiber used is a specially designed few moded fiber, which splits the degeneracy of the first mode group, leading to stable propagation of the two full vectorial modes, TM01 and TE01. For the Raman experiments pumping occur in either the fundamental mode or the two full vectorial modes, whereas the signal is in the fundamental mode. In all three experiments approximately 40 dB of gain is achieved using 307 W of pump peak power. When pumping in either of the full vectorial modes four wave mixing is observed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. S. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B29, 1563–1568 (2012).
    [CrossRef]
  2. B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, and P. S. Russell, “Amplification of higher-order modes by stimulated Raman scattering in h2-filled hollow-core photonic crystal fiber,” Opt. Lett.38, 600–602 (2013).
    [CrossRef] [PubMed]
  3. K. Rottwitt and J. Povlsen, “Analyzing the fundamental properties of Raman amplification in optical fibers,” J. Lightwave Technol.23, 3597–3605 (2005).
    [CrossRef]
  4. C. Antonelli, A. Mecozzi, and M. Shtaif, “Raman amplification in multimode fibers with random mode coupling,” Opt. Lett.38, 1188–1190 (2013).
    [CrossRef] [PubMed]
  5. R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
    [CrossRef]
  6. R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quant. Electron.11, 100–103 (1975).
    [CrossRef]
  7. L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012).
    [CrossRef]
  8. J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express21, 10764–10771 (2013).
    [CrossRef] [PubMed]
  9. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express17, 6134–6147 (2009).
    [CrossRef] [PubMed]
  10. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett.34, 2525–2527 (2009).
    [CrossRef] [PubMed]
  11. S. Ramachandran, C. Smith, P. Kristensen, and P. Balling, “Nonlinear generation of broadband polarisation vortices,” Opt. Express18, 23212–23217 (2010).
    [CrossRef] [PubMed]
  12. R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quant. Electron.15, 1157–1160 (1979).
    [CrossRef]
  13. J. Bromage, K. Rottwitt, and M. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett.14, 24–26 (2002).
    [CrossRef]
  14. J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron.8, 506–520 (2002).
    [CrossRef]

2013

2012

2010

2009

2005

2002

J. Bromage, K. Rottwitt, and M. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett.14, 24–26 (2002).
[CrossRef]

J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron.8, 506–520 (2002).
[CrossRef]

1979

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quant. Electron.15, 1157–1160 (1979).
[CrossRef]

1975

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quant. Electron.11, 100–103 (1975).
[CrossRef]

Abdolvand, A.

Andrekson, P.

J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron.8, 506–520 (2002).
[CrossRef]

Antonelli, C.

Balling, P.

Bolle, C. A.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Bromage, J.

J. Bromage, K. Rottwitt, and M. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett.14, 24–26 (2002).
[CrossRef]

Chen, Y.

L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012).
[CrossRef]

Crozier, K.

L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012).
[CrossRef]

Delbue, R.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Demas, J.

L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012).
[CrossRef]

Dupont, S.

Ellenbogen, T.

L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012).
[CrossRef]

Esmaeelpour, M.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Essiambre, R.-J.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Euser, T. G.

Gnauck, A.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Grogan, M.

L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012).
[CrossRef]

Hansryd, J.

J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron.8, 506–520 (2002).
[CrossRef]

Hedekvist, P.-O.

J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron.8, 506–520 (2002).
[CrossRef]

Horak, P.

Johansen, M.

Keiding, S. R.

Kristensen, P.

Li, J.

J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron.8, 506–520 (2002).
[CrossRef]

Lines, M.

J. Bromage, K. Rottwitt, and M. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett.14, 24–26 (2002).
[CrossRef]

Lingle, R.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

McCurdy, A.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Mecozzi, A.

Moselund, P. M.

Peckham, D.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Poletti, F.

Povlsen, J.

Pupalaikis, P.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Ramachandran, S.

S. Ramachandran, C. Smith, P. Kristensen, and P. Balling, “Nonlinear generation of broadband polarisation vortices,” Opt. Express18, 23212–23217 (2010).
[CrossRef] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett.34, 2525–2527 (2009).
[CrossRef] [PubMed]

L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012).
[CrossRef]

Ramsay, J.

Randel, S.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Rishj, L.

L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012).
[CrossRef]

Rishøj, L.

Rottwitt, K.

J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express21, 10764–10771 (2013).
[CrossRef] [PubMed]

K. Rottwitt and J. Povlsen, “Analyzing the fundamental properties of Raman amplification in optical fibers,” J. Lightwave Technol.23, 3597–3605 (2005).
[CrossRef]

J. Bromage, K. Rottwitt, and M. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett.14, 24–26 (2002).
[CrossRef]

L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012).
[CrossRef]

Russell, P. S.

Russell, P. S. J.

Ryf, R.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Shtaif, M.

Sierra, A.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Smith, C.

Steinvurzel, P.

L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012).
[CrossRef]

Stolen, R. H.

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quant. Electron.15, 1157–1160 (1979).
[CrossRef]

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quant. Electron.11, 100–103 (1975).
[CrossRef]

Sureka, A.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Trabold, B. M.

Walser, A. M.

Westlund, M.

J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron.8, 506–520 (2002).
[CrossRef]

Winzer, P. J.

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

Yan, L.

L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012).
[CrossRef]

Yan, M. F.

Ziemienczuk, M.

IEEE J. Quant. Electron.

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quant. Electron.11, 100–103 (1975).
[CrossRef]

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quant. Electron.15, 1157–1160 (1979).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron.

J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron.8, 506–520 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Bromage, K. Rottwitt, and M. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett.14, 24–26 (2002).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed raman amplification in 137-km few-mode fiber,” in “European Conference and Exposition on Optical Communications,” p. Th.13.K.5 (2011).
[CrossRef]

L. Rishj, P. Steinvurzel, Y. Chen, L. Yan, J. Demas, M. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran, “High-energy four-wave mixing, with large-mode-area higher-order modes in optical fibres,” in “European Conference and Exposition on Optical Communications,” p. Tu.3.F.2 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Refractive index profile (black) similar to FMF, and the radial intensity profile for the TE01 mode (red) [10].

Fig. 2
Fig. 2

Schematic of the experimental setup.

Fig. 3
Fig. 3

Measured spectra after 90 m of propagation in the FMF.

Fig. 4
Fig. 4

Spectra after 90 m of propagation and 307 W of peak power, the pump mode is indicated by the legend. The OSA is saturated at the wavelength of the pump.

Fig. 5
Fig. 5

Output spectra after 90 m of FMF with different combinations of bandpass and longpass filters.

Fig. 6
Fig. 6

The mode images for the two spectra shown in Fig. 5. a) The Raman peak. b) The FWM stokes line. The irregularity is due to a defect on the CCD chip of the camera.

Metrics